Skip to Main content Skip to Navigation
Theses

MCMC algorithms and hierarchical architectures for spatial modeling using Nearest Neighbor Gaussian Processes

Abstract : Over the past five years, Nearest Neighbor Gaussian Processes (NNGP) arose as a computationally scalable method forspatial statistical models, but remain hampered by problems caused by the behavior of Markov Chain Monte-Carlo (MCMC)algorithms. Several approaches allow to alleviate those issues but they restrict the flexibility of the original model.This work keeps the ``jack of all trades" basic model and tackles its MCMC weak points with several strategies. Therobustness and efficiency of high-level parameters estimation is boosted using interweaving strategies. Lower-leveloperations are parallelized using Chromatic Sampling. Efficient Hamiltonian methods are developed for NNGP models.In a second time, the versatility of the NNGP model is used in order to tackle nonstationary modeling. An originalparametrization and model architecture are proposed in order to ease model interpretation and selection while capturingcomplex nonstationarity patterns. An innovative MCMC strategy based on Hamiltonian methods and Nested Interweaving isproposed.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03462636
Contributor : Abes Star :  Contact
Submitted on : Thursday, December 2, 2021 - 1:04:14 AM
Last modification on : Thursday, December 2, 2021 - 3:49:16 AM

File

thesiscoube.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03462636, version 1

Collections

Citation

Sébastien Coube-Sisqueille. MCMC algorithms and hierarchical architectures for spatial modeling using Nearest Neighbor Gaussian Processes. Complex Variables [math.CV]. Université de Pau et des Pays de l'Adour, 2021. English. ⟨NNT : 2021PAUU3020⟩. ⟨tel-03462636⟩

Share

Metrics

Les métriques sont temporairement indisponibles