S. M. Reichman, The Responses of Plants to Metal Toxicity : A review focusing on Copper , Manganese and Zinc, Aust. Miner. ENERGY Environ. Found, pp.1-54, 2002.

I. Valeur, Speciation of heavy metals and nutrient elements in digestate, norwegian university of life science, 2011.

S. P. Mcgrath, F. J. Zhao, and E. Lombi, Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils, Plant Soil, vol.232, pp.207-214, 2001.

B. J. Alloway, Zinc in Soils and crop nutrition, 2008.

M. J. Mattina, W. Lannucci-berger, C. Musante, and J. C. White, Concurrent plant uptake of heavy metals and persistent organic pollutants from soil, Environ. Pollut, vol.124, pp.375-378, 2003.

G. P. Cobb, K. Sands, M. Waters, B. G. Wixson, and E. Dorward-king, Accumulation of heavy metals by vegetables grown in mine wastes, Environ. Toxicol. Chem, vol.19, pp.600-607, 2000.

T. E. Bahemuka and E. B. Mubofu, Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Food Chem, vol.66, pp.63-66, 1999.

R. L. Hough, N. Breward, S. D. Young, N. M. Crout, A. M. Tye et al., Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations, Environ. Health Perspect, vol.112, pp.215-221, 2004.

, Metallomics: Whence and whither, pp.1017-1019, 2012.

A. Alvarez-fernandez, P. Díaz-benito, A. Abadía, A. Lopez-millan, and J. Abadía, Metal species involved in long distance metal transport in plants, Front. Plant Sci, vol.5, pp.1-20, 2014.

G. R. Rout and S. Sahoo, Role of Iron in Plant Growth and Metabolism, Rev. Agric. Sci, vol.3, pp.1-24, 2015.

R. Hänsch, R. R. Cu, . Zn, . Mn, . Fe et al., Physiological functions of mineral micronutrients, Curr. Opin. Plant Biol, vol.12, pp.259-266, 2009.

V. Mary, Caractérisation de mutants d ' Arabidopsis thaliana affectés dans le stockage du fer dans leurs graines, 2015.

Y. Ando, S. Nagata, S. Yanagisawa, and T. Yoneyama, Copper in xylem and phloem saps from rice (Oryza sativa): The effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds, Funct. Plant Biol, vol.40, pp.89-100, 2013.

J. F. Artiola, Speciation of Copper: Speciation of Copper in the Environment, Handb. Elem. Speciat. II-Species Environ. Food, Med. Occup. Heal, pp.174-186, 2005.

J. L. Burkhead, K. A. Reynolds, S. E. Abdel-ghany, C. M. Cohu, and M. Pilon, Copper homeostasis, vol.182, pp.799-816, 2009.

D. Nohr and H. Biesalski, speciation of copper in clinical and Occupational Aspects, vol.3, 2005.

B. Hafeez, Y. M. Khanif, and M. Saleem, Role of Zinc in Plant Nutrition-A Review, Am. J. Exp. Agric, vol.3, pp.374-391, 2013.

P. M. Kopittke, P. Wang, E. Lombi, and E. Donner, Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil-Plant Systems, J. Environ. Qual, vol.46, pp.1175-1189, 2017.

C. Chen, D. Huang, and J. Liu, Functions and toxicity of nickel in plants: Recent advances and future prospects, Clean -Soil, Air, Water, vol.37, pp.304-313, 2009.

J. Barber, Photosystem II: The engine of life, Q. Rev. Biophys, vol.36, pp.71-89, 2003.

C. A. Hebbern, K. Holst, A. H. Ladegaard, S. B. Schmidt, and P. Pedas, Latent manganese deficiency increases transpiration in barley ( Hordeum vulgare ), Physiol. Plant, vol.135, pp.307-316, 2009.

M. Intawongse, uptake of heavy metals by vegetable plants grown on contaminated soils their bioavailability and speciation, 2007.

D. L. Callahan, A. J. Baker, S. D. Kolev, and A. G. Wedd, Metal ion ligands in hyperaccumulating plants, J. Biol. Inorg. Chem, vol.11, pp.2-12, 2006.

C. D. Walker and R. M. Welch, Low Molecular Weight Complexes of Zinc and Other Trace Metals in lettuce leaf, J. Agric. Food Chem, vol.35, pp.721-727, 1987.

B. H. Irving and R. J. Williams, , vol.3192, p.637, 1949.

W. E. Rauser, Structure and function of metal chelators produced by plants, Cell Biochem. Biophys, vol.31, pp.19-48, 1999.

S. P. Singh, K. Vogel-miku?, I. Ar?on, P. Vavpeti?, L. Jeromel et al., Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron, J. Exp. Bot, vol.64, pp.3249-3260, 2013.

J. Y. Cornu, U. Deinlein, S. Höreth, M. Braun, H. Schmidt et al., Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri, New Phytol, vol.206, pp.738-750, 2015.

D. L. Callahan, U. Roessner, V. Dumontet, N. Perrier, A. G. Wedd et al., LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickelhyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand, Phytochemistry, pp.240-251, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00265790

G. Alchoubassi, J. Aszyk, P. Pisarek, K. Bierla, L. Ouerdane et al., Advances in mass spectrometry for iron speciation in plants, TrAC -Trends Anal. Chem, vol.104, pp.77-86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01679466

M. J. Haydon and C. S. Cobbett, Transporters of ligands for essential metal ions in plants, New Phytol, pp.499-506, 2007.

J. Abadía, A. Lopez-millan, A. Rombola, and A. Abadia, Organic acids and Fe deficiency a review, Plant Soil, pp.75-86, 2002.

P. M. Flis, Développement de méthodes analytiques pour une spéciation à grande échelle des composés métalliques dans les plantes, 2013.

R. Rellán-Álvarez, J. Giner-martínez-sierra, J. Orduna, I. Orera, J. Á. Rodríguez-castrilln et al., Tri-Citrate Complex in the Xylem Sap of Iron-Deficient Tomato Resupplied with Iron: New Insights into Plant Iron Long-Distance Transport, Identification of a Tri-Iron(III), vol.51, pp.91-102, 2010.

P. Flis, L. Ouerdane, L. Grillet, C. Curie, S. Mari et al., Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection, New Phytol, vol.211, pp.1129-1141, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354671

D. E. Salt, R. C. Prince, A. J. Baker, I. Raskin, and I. J. Pickering, Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption Spectroscopy, Environ. Sci. Technol, vol.33, pp.713-717, 1999.

C. Curie, J. Briat, . Iron, . Signaling-in, and . Plants, Annu. Rev. Plant Biol, vol.54, pp.183-206, 2003.

J. Morrissey and M. Guerinot, Iron uptake and transport in plants: The good, the bad, and the ionome, Chem. Rev, vol.109, pp.4553-4567, 2009.

M. S. Otegui, R. Capp, and L. A. Staehelin, Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum, Plant Cell, vol.14, pp.1311-1327, 2002.

T. Eagling, A. L. Neal, S. P. Mcgrath, S. Fairweather-tait, P. R. Shewry et al., Distribution and speciation of iron and zinc in grain of two wheat genotypes, J. Agric. Food Chem, vol.62, pp.708-716, 2014.

O. A. Jones, D. A. Dias, D. L. Callahan, K. A. Kouremenos, D. J. Beale et al., The use of metabolomics in the study of metals in biological systems, Metallomics, vol.7, pp.29-38, 2015.

M. C. White, R. L. Chaney, and A. M. Decker, Metal Complexation in Xylem Fluid, Plant Physiol, vol.67, pp.301-310, 1981.

G. L. Mullins, L. E. Sommers, and T. L. Housley, Metal speciation in xylem and phloem exudates, Plant Soil, vol.96, pp.377-391, 1986.

M. T. Liao, M. J. Hedley, D. J. Woolley, R. R. Brooks, and N. , Copper uptake and translocation in chicory (Cichorium intybus L cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill cv Rondy) plants grown in NFT system I Copper uptake and distribution in plants, Plant Soil, pp.135-142

U. Kramer, J. D. Cotter-howells, J. M. Charnock, A. J. Baker, and J. A. Smith, free histidine as a metal chelator in plants that accumulate nickel, Nature, p.379, 1996.

R. Rellan-alvarez, J. Abadia, and A. Alvarez-fernandez, Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange A study by electrospray ionization timeof-flight mass spectrometry, Rapid Commun. Mass Spectrom, pp.511-518, 2008.

V. Sancenón, S. Puig, H. Mira, D. J. Thiele, and L. Peñarrubia, Identification of a copper transporter family in Arabidopsis thaliana, Plant Mol. Biol, vol.51, pp.577-587, 2003.

M. Pilon, Moving copper in plants, New Phytol, vol.192, pp.305-307, 2011.

L. Zheng, N. Yamaji, K. Yokosho, and J. F. Ma, YSL16 Is a Phloem-Localized Transporter of the Copper-Nicotianamine Complex That Is Responsible for Copper Distribution in Rice, Plant Cell, pp.3767-3782, 2012.

S. Shojima, N. Nishizawa, S. Fushiya, S. Nozoe, T. Irifune et al., Biosynthesis of Phytosiderophores, Plant Physiol, vol.93, pp.1497-1503, 1990.

B. Irtelli, W. A. Petrucci, and F. Navari-izzo, Nicotianamine and histidine/proline are, respectively, the most deficiency and excess, J. Exp. Bot, vol.60, pp.269-277, 2009.

Y. F. Xue, T. Eagling, J. He, C. Q. Zou, S. P. Mcgrath et al., Effects of nitrogen on the distribution and chemical speciation of iron and zinc in pearling fractions of wheat grain, J. Agric. Food Chem, vol.62, pp.4738-4746, 2014.

R. Terzano, Z. Chami, B. Vekemans, K. Janssens, T. Miano et al., Zinc distribution and speciation within rocket plants (Eruca vesicaria L Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and Micro-XANES, J. Agric. Food Chem, vol.56, pp.3222-3231, 2008.

T. Yoneyama, S. Ishikawa, and S. Fujimaki, Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L) during vegetative growth and grain filling: Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification, Int. J. Mol. Sci, vol.16, pp.19111-19129, 2015.

J. Wojcieszek, P. Kwiatkowski, and L. Ruzik, Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium Barbarum, L), J. Chromatogr. A, pp.70-78, 2017.

L. Ruzik and P. Kwiatkowski, Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts, Talanta, vol.183, pp.102-107, 2018.

D. R. Fernando, T. Mizuno, I. E. Woodrow, A. J. Baker, and R. N. Collins, Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy, New Phytol, vol.188, pp.1014-1027, 2010.

Y. Ishimaru, H. Masuda, K. Bashir, H. Inoue, T. Tsukamoto et al., Rice metal-nicotianamine transporter, OsYSL2, is required for the longdistance transport of iron and manganese, Plant J, vol.62, pp.379-390, 2010.

A. Sasaki, N. Yamaji, J. Xia, and J. F. Ma, OsYSL6 Is Involved in the Detoxification of Excess Manganese in Rice, Plant Physiol, vol.157, pp.1832-1840, 2011.

J. Rybak and L. Ruzik, Application of chromatography and mass spectrometry to the characterization of cobalt, copper, manganese and molybdenum in Morinda Citrifolia, J. Chromatogr. A, pp.19-25, 2013.

L. Ouerdane, S. Mari, P. Czernic, M. Lebrun, and R. ?obi?ski, Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS, J. Anal. At. Spectrom, vol.21, pp.676-683, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00098200

E. M. Kroukamp, T. Wondimu, and P. B. Forbes, Metal and metalloid speciation in plants: Overview, instrumentation, approaches and commonly assessed elements, TrAC -Trends Anal. Chem, vol.77, pp.87-99, 2016.

S. Mari, D. Gendre, K. Pianelli, L. Ouerdane, R. Lobinski et al., Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens, J. Exp. Bot, vol.57, pp.4111-4122, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124925

D. Gendre, P. Czernic, G. Conéjéro, K. Pianelli, J. F. Briat et al., TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter, Plant J, vol.49, pp.1-15, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124879

L. Grillet, L. Ouerdane, P. Flis, M. T. Hoang, M. P. Isaure et al., Ascorbate efflux as a new strategy for iron reduction and transport in plants, J. Biol. Chem, vol.289, pp.2515-2525, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945537

G. Weber, N. Von-wirén, and H. Hayen, Hydrophilic interaction chromatography of small metal species in plants using sulfobetaine-and phosphorylcholine-type zwitterionic stationary phases, J. Sep. Sci, vol.31, pp.1615-1622, 2008.

B. Shahzad, M. Tanveer, A. Rehman, S. A. Cheema, S. Fahad et al., Nickel; whether toxic or essential for plants and environment -A review, Plant Physiol. Biochem, vol.132, pp.641-651, 2018.

A. F. López-millán, F. Morales, A. Abadía, and J. Abadia, Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L) trees, J. Exp. Bot, vol.52, pp.1489-1498, 2001.

Y. Xuan, E. B. Scheuermann, A. R. Meda, H. Hayen, N. Von-wirén et al., Separation and identification of phytosiderophores and their metal complexes in plants by zwitterionic hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry, J. Chromatogr. A, vol.1136, pp.73-81, 2006.

L. O. Tiffin, Iron Translocation II Citrate/Iron Ratios in Plant Stem Exudates, Plant Physiol, vol.41, pp.515-518, 1966.

R. Nishiyama, M. Kato, S. Nagata, and S. Yanagisawa, At. Yoneyama, Identification of Zn-Nicotianamine and Fe-20-Deoxymugineic Acid in the Phloem Sap from Rice Plants (Oryza sativa L), PCP Plant Cell Physiol, vol.53, pp.381-390, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00347719

S. Lee, U. S. Jeon, S. J. Lee, Y. K. Kim, D. P. Persson et al., , vol.124

G. Nishizawa and . An, Iron fortification of rice seeds through activation of the nicotianamine synthase gene, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.22014-22019, 2009.

S. M. Kraemer, D. E. Crowley, and R. Kretzschmar, Geochemical Aspects of Phytosiderophore-Promoted Iron Acquisition by Plants, Adv. Agron, vol.91, pp.1-46, 2006.

A. F. Lopez-millan, F. Morales, A. Abadia, and J. Abadia, Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet Implications for iron and carbon transport, Plant Physiol, vol.124, pp.873-884, 2000.

S. Clemens and M. Weber, The essential role of coumarin secretion for Fe acquisition from alkaline soil, Plant Signal. Behav, vol.11, pp.1-6, 2016.

P. Sisó-terraza, A. Luis-villarroya, P. Fourcroy, J. Briat, A. Abadía et al., Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH, Front. Plant Sci, vol.7, pp.1-22, 2016.

P. Mlad?nka, K. Macáková, L. Zatloukalová, Z. ?eháková, B. K. Singh et al., In vitro interactions of coumarins with iron, pp.1108-1114, 2010.

C. Krüger, O. Berkowitz, U. W. Stephan, and R. Hell, A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L, J. Biol. Chem, vol.277, pp.25062-25069, 2002.

L. Guo and T. J. Cutright, Metal storage in reeds from an acid mine drainage contaminated field, Int. J. Phytoremediation, pp.1-26, 2016.

F. R. Segura, E. A. Nunes, F. P. Paniz, A. C. Paulelli, G. B. Rodrigues et al., Potential risks of the residue from Samarco's mine dam burst, Environ. Pollut, pp.1-13, 2016.

F. J. Zhao and S. P. Mcgrath, Biofortification and phytoremediation, Curr. Opin. Plant Biol, vol.12, pp.373-380, 2009.

S. Clemens, M. G. Palmgren, and U. Kramer, A long way ahead : understanding and engineering plant metal accumulation, Trends Plant Sci, vol.7, pp.309-315, 2002.

J. F. Briat, C. Curie, and F. Gaymard, Iron utilization and metabolism in plants, Curr. Opin. Plant Biol, vol.10, pp.276-282, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00148392

C. Palmer and M. L. Guerinot, A question of balance: facing the challenges of Cu, Fe and Zn homeostasis, Nat Chem Biol, vol.5, pp.333-340, 2009.

N. Gupta, H. Ram, and B. Kumar, Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation, Rev. Environ. Sci. Biotechnol, vol.15, pp.89-109, 2016.

P. J. White and M. R. Broadley, Biofortification of crops with seven mineral elements often lacking in human diets -iron, zinc, copper, calcium, magnesium, selenium and iodine, New Phytol, vol.182, pp.49-84, 2009.

M. L. Guerinot and Y. Yi, Iron: Nutritious, Noxious, and Not Readily Available, Plant Physiol, vol.104, pp.815-820, 1994.

J. B. Passioura, The transport of water from soil to shoot in wheat seedlings, J. Exp. Bot, vol.31, pp.333-345, 1980.

A. G. Netting, J. C. Theobald, and I. C. Dodd, Xylem sap collection and extraction methodologies to determine in vivo concentrations of ABA and its bound forms by gas chromatography-mass spectrometry (GC-MS), Plant Methods, vol.8, pp.1-14, 2012.

M. Alexou and A. Peuke, Methods for Xylem Sap Collection, Plant Miner, Nutr. Methods Protoc. Methods Mol. Biol, vol.953, pp.195-207, 2013.

K. L. Ponder, R. J. Watson, M. Malone, and J. Pritchard, Mineral content of excreta from the spittlebug Philaenus spumarius closely matches that of xylem sap, New Phytol, vol.153, pp.237-241, 2002.

M. Malone, R. Watson, and J. Pritchard, The spittlebug Philaenus spumarius feeds from mature xylem at the full hydraulic tension of the transpiration stream, New Phytol, vol.143, pp.261-271, 1999.

K. I. Beckett, A. B. Robertson, and P. G. Matthews, Studies on gas exchange in the meadow spittlebug, Philaenus spumarius : the metabolic cost of feeding on, and living in, xylem sap, J. Exp. Biol, p.222, 2019.

P. F. Scholander, H. T. Hammel, E. D. Bradstreet, and E. A. Hemmingsen, Sap pressure in vascular plants, Science, vol.148, pp.339-346, 1965.

T. S. Maier, J. Kuhn, and C. Müller, Proposal for field sampling of plants and processing in the lab for environmental metabolic fingerprinting, Plant Methods, vol.6, pp.1-14, 2010.

R. Ortega, A. Carmona, I. Llorens, and P. L. Solari, X-ray absorption spectroscopy of biological samples A tutorial, J. Anal. At. Spectrom, vol.27, pp.2054-2065, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00767655

J. Szpunar, part I principles and fundamentals, pp.2-13, 2003.

J. Szpunar, Bio-inorganic speciation analysis by hyphenated techniques, Analyst, vol.125, pp.963-988, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00291437

L. Beuvier, Developpement d'une methode de separation chromatographique couplee aux spectrometries de masse a source d'ionisation a source plasma a couplage inductif ( ICP-MS ) : application a l'analyse de speciation des lanthanides, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01381095

M. Batsala, B. Chandu, B. Sakala, S. Nama, and S. Domatoti, Inductively Coupled Plasma Mass Spectrometry (Icp-Ms), vol.2, pp.2231-2781, 2012.

T. Wang, Liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS), J. Liq. Chromatogr. Relat. Technol, vol.30, pp.807-831, 2007.

S. Forcisi, F. Moritz, B. Kanawati, D. Tziotis, R. Lehmann et al., Liquid chromatography-mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling, J. Chromatogr. A, vol.1292, pp.51-65, 2013.

G. Kahsay, H. Song, A. Van-schepdael, D. Cabooter, and E. Adams, Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics, J. Pharm. Biomed. Anal, vol.87, pp.142-154, 2014.

J. Szpunar, Advances in analytical methodology for bioinorganic speciation analysis : metallomics , metalloproteomics and heteroatom-tagged proteomics and metabolomics, Analyst, vol.130, pp.442-465, 2005.

G. H. , Size Exclusion Chromatography princicples and methods, Sciences, 2000.

, Harvard apparatus, Guide to Gel Filtration or size exclusion chromatography

K. O. Eriksson, Reversed Phase Chromatography, Biopharm. Process. Dev. Des. Implement. Manuf. Process, pp.433-439, 2018.

L. Ruzik and J. Wojcieszek, In vitro digestion method for estimation of copper bioaccessibility in Açaí berry, Monatshefte Fur Chemie, vol.147, pp.1429-1438, 2016.

J. Wojcieszek and L. Ruzik, Enzymatic Extraction of Copper Complexes with Phenolic Compounds from Açaí (Euterpe oleracea Mart) and Bilberry (Vaccinium myrtillus L) Fruits, Food Anal. Methods, vol.9, pp.2105-2114, 2016.

P. Jandera, Stationary and mobile phases in hydrophilic interaction chromatography : a review, Anal. Chim. Acta, vol.692, pp.1-25, 2011.

B. Buszewski and S. Noga, Hydrophilic interaction liquid chromatography ( HILIC ) -a powerful separation technique, Anal Bioanal Chem, vol.402, pp.231-247, 2012.

Y. Kawachi, T. Ikegami, H. Takubo, Y. Ikegami, M. Miyamoto et al., Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases : Hydrophilicity , charge effects , structural selectivity , and separation efficiency, J. Chromatogr. A, vol.1218, pp.5903-5919, 2011.

G. Greco and T. Letzel, Main Interactions and Influences of the Chromatographic Parameters in HILIC Separations, J. Chromatogr. Sci, vol.51, pp.684-693, 2013.

D. Xie, J. Mattusch, and R. Wennrich, Retention of arsenic species on zwitterionic stationary phase in hydrophilic interaction chromatography, J. Sep. Sci, vol.33, pp.817-825, 2010.

E. De-hoffmann and V. Stroobant, Mass spectrometry-principles and applications, 2010.

A. G. Marshall, C. L. Hendrickson, S. D. , and .. Shi, High-Resolution FT-ICRMS, vol.74, pp.252-259, 2002.

P. Poho and T. Hyotylainen, Mass Spectrometric Detection for Chromatography, RSC Chromatogr. Monogr. Chromatogr. Methods Metabolomics, 2013.

D. Banerjee, Inductively Coupled Plasma Mass Spectrometry, 2005.

T. W. May, R. H. Wiedmeyer, U. S. Survey, and B. R. , Division, A Table of Polyatomic Interferences in ICP-MS, At. Spectrosc, vol.19, pp.150-155, 1998.

B. Michalke, Element speciation definitions, analytical methodology, and some examples, Ecotoxicol. Environ. Saf, vol.56, pp.122-139, 2003.

R. Thomas, M. Ms, and . Usa, , 2004.

A. G. Marshall and C. L. Hendrickson, High-Resolution Mass Spectrometers, Annu. Rev. Anal. Chem, vol.1, pp.579-599, 2008.

M. Scigelova, M. Hornshaw, A. Giannakopulos, and A. Makarov, fourier transform mass spectrometry, Mol. Cell. Proteomics, pp.1-19, 2011.

R. A. Zubarev and A. Makarov, Orbitrap mass spectrometry, Anal. Chem, vol.85, pp.5288-5296, 2013.

S. Vasquez, Introduction to Tandem Mass Spectrometry, Forensic Anal. Sci. Serv, 2010.

J. K. Prasain, Tandem Mass Spectrometry-applications and principles, 2012.

V. Gabelica, A. A. Shvartsburg, C. Afonso, P. Barran, J. L. Benesch et al., Recommendations for reporting ion mobility Mass Spectrometry measurements, Mass Spectrom. Rev, vol.38, pp.291-320, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02012317

T. Mairinger, T. J. Causon, and S. Hann, The potential of ion mobility-mass spectrometry for non-targeted metabolomics, Curr. Opin. Chem. Biol, vol.42, pp.9-15, 2018.

X. Zhang, K. Quinn, C. Cruickshank-quinn, R. Reisdorph, and N. Reisdorph, The application of ion mobility mass spectrometry to metabolomics, Curr. Opin. Chem. Biol, vol.42, pp.60-66, 2018.

J. E. Kyle, X. Zhang, K. K. Weitz, M. E. Monroe, Y. M. Ibrahim et al., Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry, Analyst, pp.1649-1659, 2016.

G. Ben-nissan and M. Sharon, The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes, Curr. Opin. Chem. Biol, vol.42, pp.25-33, 2018.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. , Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis, J. Mass Spectrom, vol.42, pp.1422-1432, 2007.

S. K. Wiedmer and T. Hyötyläinen, Selection of Analytical Methodology for Metabolomics, RSC Chromatogr. Monogr, pp.1-10, 2013.

P. Rodríguez-gonzález, J. M. Marchante-gayón, J. I. Alonso, and A. Sanz-medel, Isotope dilution analysis for elemental speciation: A tutorial review, Spectrochim. Acta -Part B, vol.60, pp.151-207, 2005.

M. Hoppler, C. Zeder, and T. Walczyk, Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry, Anal. Chem, vol.81, pp.7368-7372, 2009.

K. G. Heumann, Isotope dilution mass spectrometry, Int. J. Mass Spectrom. Ion Process, pp.575-592, 1992.

P. Rodríguez-gonzález and J. I. Alonso, Recent advances in isotope dilution analysis for elemental speciation, J. Anal. At. Spectrom, vol.25, pp.239-259, 2010.

C. Swart, O. Rienitz, and D. Schiel, Impact of pump flow fluctuations on post column online ID-ICP-MS, vol.401, pp.2025-2031, 2011.

D. Schaumlöffel and R. ?obi?ski, Isotope dilution technique for quantitative analysis of endogenous trace element species in biological systems, Int. J. Mass Spectrom, vol.242, pp.217-223, 2005.

N. Hardy and R. Hall, methods in molecular biology, 2012.

R. J. Williams, Chemical selection of elements by cells, Coord. Chem. Rev, pp.583-595, 2001.

M. Montes-bayón, M. Sharar, and M. Corte-rodriguez, Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics, TrAC -Trends Anal. Chem, vol.104, pp.4-10, 2018.

S. Mounicou, J. Szpunar, and R. Lobinski, Metallomics: The concept and methodology, Chem. Soc. Rev, vol.38, pp.1119-1138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01560749

J. López-barea and J. L. Gómez-ariza, Environmental proteomics and metallomics, vol.6, issue.1, pp.51-62, 2006.

K. Spagou, H. Tsoukali, N. Raikos, H. Gika, I. D. Wilson et al., Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies, J. Sep. Sci, vol.33, pp.716-727, 2010.

E. Rathahao-paris, S. Alves, C. Junot, and J. C. Tabet, High resolution mass spectrometry for structural identification of metabolites in metabolomics, Metabolomics, vol.12, pp.1-15, 2016.

R. Ge, X. Sun, and Q. He, Overview of the Metallometabolomic Methodology for Metal-Based Drug Metabolism, Curr. Drug Metab, vol.12, pp.287-299, 2011.

W. Chen, G. Zhang, W. Chen, Q. Zhong, and H. Chen, metabolomic profiling of matured coconut water during post harvest storage revealed discrimination and distinct changes in metabolites, RSC Adv, vol.8, pp.31396-31405, 2018.

R. D. Hall, I. D. Brouwer, and M. A. Fitzgerald, Plant metabolomics and its potential application for human nutrition, Physiol. Plant, vol.132, pp.162-175, 2008.

S. F. Graham, E. Amigues, M. Migaud, and R. A. Browne, Application of NMR based metabolomics for mapping metabolite variation in European wheat, Metabolomics, vol.5, pp.302-306, 2009.

S. Moco, R. J. Bino, O. Vorst, H. A. Verhoeven, J. De-groot et al., A liquid chromatography-mass spectrometry-based metabolome database for tomato, Plant Physiol, vol.141, pp.1205-1218, 2006.

A. Moing, A. Aharoni, B. Biais, I. Rogachev, S. Meir et al., Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics, New Phytol, vol.190, pp.683-696, 2011.

M. Jahangir, H. K. Kim, Y. H. Choi, and R. Verpoorte, health-affecting Compounds in Br assicaceae, Compr. Rev. FOOD Sci. FOOD Saf, vol.8, pp.31-43, 2009.

C. Lindinger, P. Pollien, R. C. De-vos, Y. Tikunov, J. A. Hageman et al., Identification of ethyl formate as a quality marker of the fermented off, vol.127

, J. Agric. Food Chem, vol.57, pp.9972-9978, 2009.

M. Beckmann, D. P. Enot, D. P. Overy, and J. Draper, Representation , Comparison , and Interpretation of Metabolome Fingerprint Data for Total Composition Analysis and Quality Trait Investigation in Potato Cultivars, J. Agric. Food Chem, vol.55, pp.3444-3451, 2007.

D. González-peña and L. Brennan, Recent Advances in the Application of Metabolomics for Nutrition and Health, Annu. Rev. Food Sci. Technol, vol.10, pp.479-519, 2019.

E. P. Ryan, A. L. Heuberger, C. D. Broeckling, E. C. Borresen, C. Tillotson et al., Advances in Nutritional Metabolomics, pp.109-120, 2013.

M. Hoppler, I. Egli, N. Petry, D. Gille, C. Zeder et al., Iron Speciation in Beans (Phaseolus vulgaris) Biofortified by Common Breeding, J. Food Sci, vol.79, pp.1-6, 2014.

J. Köster, R. Shi, N. Von-wirén, and G. Weber, Evaluation of different column types for the hydrophilic interaction chromatographic separation of iron-citrate and copper-histidine species from plants, J. Chromatogr. A, vol.1218, pp.4934-4943, 2011.

R. Terzano, T. Mimmo, B. Vekemans, L. Vincze, G. Falkenberg et al., Iron (Fe) speciation in xylem sap by XANES at a high brilliant synchrotron X-ray source: Opportunities and limitations, Anal. Bioanal. Chem, vol.405, pp.5411-5419, 2013.

A. L. Neal, K. Geraki, S. Borg, P. Quinn, J. F. Mosselmans et al., Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: Implications for mineral transport into developing grain, J. Biol. Inorg. Chem, vol.18, pp.557-570, 2013.

M. Tsednee, Y. W. Mak, Y. R. Chen, and K. C. Yeh, A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore-iron complexes in barley, New Phytol, vol.195, pp.951-961, 2012.

J. Köster, H. Hayen, N. Von-wirén, and G. Weber, Isoelectric focusing of small non-covalent metal species from plants, Electrophoresis, vol.32, pp.772-781, 2011.

N. Brier, S. V. Gomand, E. Donner, D. Paterson, E. Smolders et al., Element distribution and iron speciation in mature wheat grains (Triticum aestivum L) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging, Plant Cell Environ, vol.39, pp.1835-1847, 2016.

D. P. Persson, T. H. Hansen, K. H. Laursen, J. K. Schjoerring, and S. Husted, Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS, Metallomics, pp.418-426, 2009.

G. Sarret, P. Saumitou-laprade, V. Bert, O. Proux, J. Hazemann et al., Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri, Plant Physiol. Am. Soc. Plant Biol, vol.130, pp.1815-1826, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00212288

S. Lee, D. P. Persson, T. H. Hansen, S. Husted, J. K. Schjoerring et al., Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase, Plant Biotechnol. J, vol.9, pp.865-873, 2011.

A. Straczek, G. Sarret, A. Manceau, P. Hinsinger, N. Geoffroy et al., Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn, pp.1-21, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311796

Z. Wei, J. W. Wong, and D. Chen, Speciation of heavy metal binding non-protein thiols in Agropyron elongatum by size-exclusion HPLC-ICP-MS, Microchem. J, vol.74, pp.207-213, 2003.

H. Kupper, A. Mijovilovich, W. Meyer-klaucke, and P. M. Kroneck, Tissue-and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium Zinc Hyperaccumulator Thlaspi caerulescens ( Ganges Ecotype ) Revealed by X-Ray absorption spectroscopy, Plant Physiol, vol.134, pp.748-757, 2004.

L. Lu, X. Liao, J. Labavitch, X. Yang, E. Nelson et al., Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence, Plant Physiol. Biochem, vol.84, pp.224-232, 2014.

A. C. Monsant, P. Kappen, Y. Wang, P. J. Pigram, A. J. Baker et al., In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure, Plant Soil, vol.348, pp.167-183, 2011.

U. Deinlein, M. Weber, H. Schmidt, S. Rensch, A. Trampczynska et al., Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation, Plant Cell, pp.708-723, 2012.

K. Hazama, S. Nagata, T. Fujimori, S. Yanagisawa, and T. Yoneyama, Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium, Physiol. Plant, vol.154, pp.243-255, 2015.

T. Schneider, D. P. Persson, S. Husted, M. Schellenberg, P. Gehrig et al., A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J and C Presl) FK Meyer, Plant J, vol.73, pp.131-142, 2013.

N. Von-wirén, H. Marschner, and V. Römheld, Roots of iron-efficient maize also absorb phytosiderophorechelated zinc, Plant Physiol, vol.111, pp.1119-1125, 1996.

J. A. Hernandez-viezcas, H. Castillo-michel, J. C. Andrews, M. Cotte, C. Rico et al., In situ synchrotron X-ray fluorescence mapping and speciation of CeO 2 and ZnO nanoparticles in soil cultivated soybean, ACS Nano, vol.7, pp.1415-1423, 2013.

J. A. Hernandez-viezcas, H. Castillo-michel, A. D. Servin, J. R. Peralta-videa, and J. L. Gardea-torresdey, Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis julifloravelutina (velvet mesquite) treated with ZnO nanoparticles, Chem. Eng. J, vol.170, pp.346-352, 2011.

S. Alves, C. Nabais, M. De, L. Simões-gonçalves, M. M. Correia et al., Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp lusitanicum growing on serpentine soils of northeast Portugal, J. Plant Physiol, vol.168, pp.1715-1722, 2011.

M. Guilpain, B. Laubie, X. Zhang, J. L. Morel, and M. O. Simonnot, Speciation of nickel extracted from hyperaccumulator plants by water leaching, Hydrometallurgy, vol.180, pp.192-200, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901475

U. Krämer, I. J. Pickering, R. C. Prince, I. Raskin, and D. E. Salt, Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species, Plant Physiol, vol.122, pp.1343-1353, 2000.

E. Montargès-pelletier, V. Chardot, G. Echevarria, L. J. Michot, A. Bauer et al., Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study, Phytochemistry, vol.69, pp.1695-1709, 2008.

K. Peeters, T. Zuliani, D. Zigon, R. Milacic, and J. Scancar, Nickel speciation in cocoa infusions using monolithic chromatography -Post-column ID-ICP-MS and Q-TOF-MS, Food Chem, vol.230, pp.327-335, 2017.

A. Van-der-ent, R. Mak, M. D. De-jonge, and H. H. Harris, Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf sericeum (Phyllanthaceae): Elemental distribution and chemical speciation, Sci. Rep, vol.8, pp.1-15, 2018.

T. Yamaguchi, C. Tsukada, K. Takahama, T. Hirotomo, R. Tomioka et al., Localization and speciation of cobalt and nickel in the leaves of the cobalt-hyperaccumulating tree Clethra barbinervis, Trees -Struct. Funct, vol.33, pp.521-532, 2018.

P. M. Kopittke, N. W. Menzies, M. D. De-jonge, B. A. Mckenna, E. Donner et al., In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea, Plant Physiol, vol.156, pp.663-673, 2011.

E. Spielman-sun, E. Lombi, E. Donner, A. Avellan, B. Etschmann et al., Temporal Evolution of Copper Distribution and Speciation in Roots of Triticum aestivum Exposed to CuO, Cu(OH)2, and CuS Nanoparticles, Environ. Sci. Technol, vol.52, pp.9777-9784, 2018.

M. T. Liao, M. J. Hedley, D. J. Woolley, R. R. Brooks, and M. A. Nichols, Copper uptake and translocation in chicory (Cichorium intybus L cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill cv Rondy) plants grown in NFT system II The role of nicotianamine and histidine in xylem sap copper transport, Plant Soil, vol.223, pp.243-252

R. A. Sousa, N. Baccan, and S. Cadore, Determination of Metals in Brazilian Coconut Water Using an Inductively Coupled Plasma Optical Emission Spectrometer, J. Braz. Chem. Soc, vol.16, pp.540-544, 2005.

R. A. Sousa, C. J. Silva, N. Baccan, and S. Cadore, Determination of metals in bottled coconut water using an inductively coupled plasma optical emission spectrometer, J. Food Compos. Anal, vol.18, pp.399-408, 2005.

A. M. Silva, X. Kong, M. C. Parkin, R. Cammack, and R. C. Hider, Iron(iii) citrate speciation in aqueous solution, Dalt. Trans, pp.8616-8625, 2009.

T. A. Berger, Characterization of a 2 6 microm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 microm totally porous silica, J. Chromatogr. A, vol.1218, pp.4559-4568, 2011.

I. Ali, Z. A. Al-othman, and M. Al-za, Superficially porous particles columns for super fast HPLC separations, Biomed. Chromatogr, vol.26, pp.1001-1008, 2012.

E. Oláh, S. Fekete, J. Fekete, and K. Ganzler, Comparative study of new shell-type , sub-2 microm fully porous and monolith stationary phases , focusing on mass-transfer resistance, J. Chromatogr. A, vol.1217, pp.3642-3653, 2010.

D. Garica-gomez, E. Rodriguez-gonzalo, and R. Carabias-martinez, Stationary phases for separation of nucleosides and nucleotides by hydrophilic interaction liquid chromatography, Trends Anal. Chem, vol.47, pp.111-128, 2013.

V. G. Mihucz, E. Tatár, B. Kmethy, G. Záray, and E. Cseh, Investigation of the transported heavy metal ions in xylem sap of cucumber plants by size exclusion chromatography and atomic absorption spectrometry, J. Inorg. Biochem, vol.81, pp.81-87, 2000.

Z. G. Wei, J. W. Wong, H. Y. Zhao, H. J. Zhang, H. X. Li et al., Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry, Biol. Trace Elem. Res, vol.118, pp.146-158, 2007.

C. Bovet, Aspects botaniques, applications et perspectives thérapeutiques de Cocos nucifera L, 2017.

A. Prades, M. Dornier, N. Diop, and J. Pain, Coconut water preservation and processing: a review, Fruits, pp.157-171, 2012.

A. Obike, Proximate and Trace Metal Analysis of Coconut ( Cocos nucifera ) Collected from Southeastern , Nigeria Proximate and Trace Metal Analysis of Coconut ( Cocos nucifera ) Collected from Southeastern, vol.3, pp.357-361, 2017.

J. W. Yong, L. Ge, Y. F. Ng, and S. N. Tan, The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L) Water, Molecules, vol.14, pp.5144-5164, 2009.

A. Prades, determination de la qualite de l'eau de coco en fonction du stade de maturation des noix et lors de sa stabilisation par chauffage ohmique et filtration membranaire, 2011.

C. Bovet, Aspects botaniques, applications et perspectives thérapeutiques de Cocos nucifera, 2017.

J. C. Jackson, A. Gordon, G. Wizzard, K. Mccook, and R. Rolle, Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit, J. Sci. Food Agric, vol.84, pp.1049-1052, 2004.

T. C. Tan, L. H. Cheng, R. Bhat, G. Rusul, and A. M. Easa, Effectiveness of ascorbic acid and sodium metabisulfite as anti-browning agent and antioxidant on green coconut water (Cocos nucifera) subjected to elevated thermal processing, Int. Food Res. J, vol.22, pp.631-637, 2015.

G. A. Petroianu, M. Kosanovic, I. Saad, B. Shehatta, A. Mahgoub et al., Green coconut water for intravenous use: Trace and minor element content, J. Trace Elem. Exp. Med, vol.17, pp.273-282, 2004.

U. Santoso, K. Kubo, T. Ota, T. Tadokoro, and A. Maekawa, Nutrient composition of kopyor coconuts (Cocos nucifera L), Food Chem, vol.57, pp.299-304, 1996.

D. Campbell-falck, T. Thomas, T. M. Falck, N. Tutuo, and K. Clem, The intravenous use of coconut water, Am. J. Emerg. Med, vol.18, pp.108-111, 2000.

I. Didarul, A. Rahaman, and A. Afrose, Assessment of Heavy Metal Concentration in Coconut Water, Recent Res. Sci. Technol, vol.10, pp.7-10, 2018.

E. M. Richter, D. P. De-jesus, R. A. Muñoz, C. L. Lago, and L. Angnes, Determination of anions, cations, and sugars in coconut water by capillary electrophoresis, J. Braz. Chem. Soc, vol.16, pp.1134-1139, 2005.

B. K. Uphade, S. S. Shelke, and D. G. Thorat, Studies on Some Physico-Chemical Characteristics of Coconut Water Near Sugar and Chemical Factory , Kopergaon (MS), Int. J. Chem. Sci, vol.6, pp.2052-2054, 2008.

R. Assa, J. Konan, N. Agbo, A. Prades, and J. Nemlin, Caracteristiques physico-chimiques de l'eau des fruits de quatre cultivars de cocotier (Cocos nucifera l) en Côte d'Ivoire, Agron. Africaine, vol.19, pp.41-51, 2007.

G. Chandrajith, A. C. Kannangara, and K. Ranaweera, Comparative analysis of coconut water in four different maturity stages, J. Pharmacogn. Phytochem, vol.7, pp.1814-1817, 2018.

A. K. Karna, A. Srinivasulu, and S. P. Kumar, Review on physico chemical characters on tender nut of coconut ( Cocus nucifera L ), Int. J. Chem. Stud, vol.6, pp.2292-2297, 2018.

A. Terdwongworakul, S. Chaiyapong, B. Jarimopas, and W. Meeklangsaen, Physical properties of fresh young Thai coconut for maturity sorting, Biosyst. Eng, vol.103, pp.208-216, 2009.

W. Chen, G. Zhang, W. Chen, Q. Zhong, and H. Chen, Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites, RSC Adv, vol.8, pp.31396-31405, 2018.

W. H. Ernst, Bioavailability of heavy metals and decontamination of soils by plants, Appl. Geochemistry, vol.11, pp.163-167, 1996.

T. O. De-araújo, L. Freitas-silva, B. V. Santana, K. N. Kuki, E. G. Pereira et al., Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species, Environ. Sci. Pollut. Res, vol.21, pp.2777-2784, 2014.

B. V. Santana, T. O. De-araújo, G. C. Andrade, L. Freitas-silva, K. N. Kuki et al., Leaf morphoanatomy of species tolerant to excess iron and evaluation of their phytoextraction potential, Environ. Sci. Pollut. Res, vol.21, pp.2550-2562, 2014.

A. Álvarez-fernández, P. Díaz-benito, A. Abadía, A. Lopez-millan, and J. Abadía, Metal species involved in long distance metal transport in plants, Front. Plant Sci, vol.5, pp.1-20, 2014.

T. Oliveira, D. Araujo, M. Isaure, G. Choubassi, K. Bierla et al., Paspalum urvillei and Setaria parviflora , two grasses naturally adapted to extreme iron-rich environments, Plant Physiol. Biochem
URL : https://hal.archives-ouvertes.fr/hal-02518238

, World Health Organization, C.f.D.C.a, Prevention, Assessing the Iron Status of Populations, World Health Organization, 2007.

R. K. Gupta, S. S. Gangoliya, and N. K. Singh, J. Food Sci. Technol, vol.52, p.676, 2015.

Y. F. Xue, T. Eagling, J. He, C. Q. Zou, S. P. Mcgrath et al., J. Agric. Food Chem, vol.62, p.4738, 2014.

T. Eagling, A. L. Neal, S. P. Mcgrath, S. Fairweather-tait, P. R. Shewry et al., J. Agric. Food Chem, vol.62, p.708, 2014.

T. Eagling, A. A. Wawer, P. R. Shewry, F. J. Zhao, and S. J. Fairweather-tait, J. Agric. Food Chem, vol.62, p.10320, 2014.

M. Hoppler, I. Egli, N. Petry, D. Gille, C. Zeder et al., J. Food Sci, vol.79, p.1629, 2014.

D. P. Persson, T. H. Hansen, and K. H. Laursen, J.K. Schjoerring, S. Husted, Metallomics, vol.1, p.418, 2009.

T. Kobayashi and N. K. Nishizawa, Iron Uptake, Translocation, and Regulation in Higher Plants, p.131, 2012.

J. Morrissey and M. L. Guerinot, Chem. Rev, vol.109, p.4553, 2009.

S. Clemens and M. Weber, Plant Signal Behav, vol.11, p.1114197, 2016.

P. Sis-o-terraza, A. Luis-villarroya, P. Fourcroy, J. Briat, A. Abadía et al., Front Plant Sci, vol.7, 2016.

P. Mladenka, K. Macakova, L. Zatloukalova, Z. Rehakova, B. K. Singh et al., Biochimie, vol.92, p.1108, 2010.

L. Guo and T. J. Cutright, Int. J. Phytoremediation, vol.19, p.254, 2017.

F. R. Segura, E. A. Nunes, F. P. Paniz, A. C. Paulelli, G. B. Rodrigues et al., Environ. Pollut, vol.218, p.813, 2016.

F. Zhao and S. P. Mcgrath, Curr. Opin. Plant Biol, vol.12, p.373, 2009.

P. Flis, L. Ouerdane, L. Grillet, C. Curie, S. Mari et al., New Phytol, vol.211, p.1129, 2016.

L. Grillet, L. Ouerdane, P. Flis, M. T. Hoang, M. P. Isaure et al., J. Biol. Chem, vol.289, p.2515, 2014.

A. Alvarez-fern-andez, P. Díaz-benito, A. Abadía, and A. , L opez-Mill an, J. Abadía, Front. Plant Sci, vol.5, p.105, 2014.

C. Krüger, O. Berkowitz, U. W. Stephan, and R. Hell, J. Biol. Chem, vol.277, p.25062, 2002.

R. Alvarez, J. Giner-martínez-sierra, J. Orduna, I. Orera, J. A. Rodríguez-castrilln et al., Plant Cell Physiol, vol.51, p.31, 2010.

S. P. Singh, K. Vogel-miku-s, I. Ar-con, P. Vavpeti-c, L. Jeromel et al., J. Exp. Bot, vol.64, p.3249, 2013.

E. Lombi, K. G. Scheckel, and I. M. Kempson, Environ. Exp. Bot, vol.72, p.3, 2011.

R. Terzano, T. Mimmo, B. Vekemans, L. Vincze, G. Falkenberg et al., Anal. Bioanal. Chem, vol.405, p.5411, 2013.

N. Brier, S. V. Gomand, E. Donner, D. Paterson, E. Smolders et al., Plant, Cell Environ, vol.39, p.1835, 2016.

A. L. Neal, K. Geraki, S. Borg, P. Quinn, J. F. Mosselmans et al., J. Biol. Inorg. Chem, vol.18, p.557, 2013.

S. Lee, U. S. Jeon, S. J. Lee, Y. K. Kim, D. P. Persson et al., Proc. Natl. Acad. Sci. U. S. A, vol.106, p.22014, 2009.

E. Yoshimura, S. Sakaguchi, H. Nakanishi, N. K. Nishizawa, I. Nakai et al., Phytochem. Anal, vol.11, p.160, 2000.

A. F. , F. Morales, Y. Gogorcena, A. Abadía, and J. Abadía, J. Plant Physiol, vol.166, p.375, 2009.

R. Nishiyama, M. Kato, S. Nagata, S. Yanagisawa, and T. Yoneyama, Plant Cell Physiol, vol.53, p.381, 2012.

T. Hirayama and H. Nagasawa, J Clin Biochem Nutr, vol.60, p.39, 2017.

T. Ariga, K. Hazama, S. Yanagisawa, and T. Yoneyama, Soil Sci. Plant Nutr, vol.60, p.460, 2014.

L. Ouerdane, S. Mari, P. Czernic, M. Lebrun, R. ?obi et al., J. Anal. Atomic Spectrom, vol.21, p.676, 2006.

J. Szpunar, Analyst, vol.125, p.963, 2000.

B. Buszewski and S. Noga, Anal. Bioanal. Chem, vol.402, p.231, 2012.

J. Oster, R. Shi, N. Von-wir-en, and G. Weber, J. Chromatogr. A, vol.1218, p.4934, 2011.

L. Nov-akov-a, L. Havlíkov-a, and H. , Vl ckov a, TrAC -Trends Anal. Chem, vol.63, p.55, 2014.

K. Spagou, H. Tsoukali, N. Raikos, H. Gika, I. D. Wilson et al., J. Sep. Sci, vol.33, p.716, 2010.

R. Alvarez, S. Opez-gomoll-on, J. Abadía, and A. , Alvarez-Fern andez, J Agric Food Chem, vol.59, p.6864, 2011.

M. Dell'mour, W. Schenkeveld, E. Oburger, L. Fischer, S. Kraemer et al., Electrophoresis, vol.33, p.726, 2012.

M. Tsednee, Y. W. Mak, Y. R. Chen, and K. C. Yeh, New Phytol, vol.195, p.951, 2012.

N. Jelali, M. Wissal, M. Dell'orto, C. Abdelly, M. Gharsalli et al., Environ Exp Bot, vol.68, p.238, 2010.

Y. Xuan, E. B. Scheuermann, A. R. Meda, H. Hayen, N. Von-wir-en et al., J Chromatogr A, vol.1136, p.73, 2006.

M. Dell'mour, G. Koellensperger, J. P. Quirino, P. R. Haddad, C. Stanetty et al., Electrophoresis, vol.31, p.1201, 2010.

J. C. May and J. A. Mclean, Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge, p.387, 2016.

G. Weber, N. Von-wir-en, and H. Hayen, BioMetals, vol.21, p.503, 2008.

R. Alvarez, J. Abadía, A. Alvarez-fern, and . Andez, Rapid Commun. Mass Spectrom, vol.22, p.1553, 2008.

G. Lattanzio, S. Andaluz, A. Matros, and J. J. Calvete, Proteomics, vol.13, p.2283, 2013.

B. , Int. J. Vitam. Nutr. Res, vol.77, p.152, 2007.

C. Lv, G. Zhao, and B. , J. Nutr. Biochem, vol.26, p.532, 2015.

R. J. Lukac, M. R. Aluru, and M. B. Reddy, J. Agric. Food Chem, vol.57, p.2155, 2009.

G. Drakakaki, S. Marcel, R. P. Glahn, E. K. Lund, S. Pariagh et al., Plant Mol. Biol, vol.59, p.869, 2006.

M. E. Del-castillo, M. Busto, A. Montes-bay-on, and . Sanz-medel, Anal. Chem, vol.78, p.8218, 2006.

S. Lee, Iron fortification of rice seeds through activation of the nicotianamine synthase gene, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.51, pp.22014-22019, 2009.

R. Wegmüller, F. Tay, C. Zeder, M. Brni?, and R. F. Hurrell, Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide, J. Nutr, vol.144, issue.2, pp.132-136, 2014.

P. R. Henry, C. B. Ammerman, and R. C. Littell, Relative Bioavailability of Manganese from a Manganese-Methionine Complex and Inorganic Sources for Ruminants, J. Dairy Sci, vol.75, pp.3473-3478, 1992.

U. Santoso, K. Kubo, T. Ota, T. Tadokoro, and A. Maekawa, Nutrient composition of kopyor coconuts (Cocos nucifera L.), Food Chem, vol.57, issue.2, pp.299-304, 1996.

J. W. Yong, L. Ge, Y. F. Ng, and S. N. Tan, The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water, Molecules, vol.14, pp.5144-5164, 2009.

A. Obike, Proximate and Trace Metal Analysis of Coconut ( Cocos nucifera ) Collected from Southeastern , Nigeria Proximate and Trace Metal Analysis of Coconut ( Cocos nucifera ) Collected from Southeastern, vol.3, pp.357-361, 2017.

R. A. Sousa, N. Baccan, and S. Cadore, Determination of Metals in Brazilian Coconut Water Using an Inductively Coupled Plasma Optical Emission Spectrometer, J. Braz. Chem. Soc, vol.16, issue.3B, pp.540-544, 2005.

R. A. Sousa, C. J. Silva, N. Baccan, and S. ,

. Cadore, Determination of metals in bottled coconut water using an inductively coupled plasma optical emission spectrometer, J. Food Compos. Anal, vol.18, issue.3, pp.399-408, 2005.

I. Didarul, A. Rahaman, and A. Afrose, Assessment of Heavy Metal Concentration in Coconut Water, Recent Res. Sci. Technol, vol.10, pp.7-10, 2018.

D. Schaumlöffel, L. Ouerdane, B. Bouyssiere, and R. ?obi?ski, Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection, J. Anal. At. Spectrom, vol.18, pp.120-127, 2003.

S. Mounicou, Identification of metallothionein subisoforms in HPLC using accurate mass and online sequencing by electrospray hybrid linear ion trap-orbital ion trap mass spectrometry, Anal. Chem, vol.82, pp.6947-6957, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01649293

H. , Guide to Gel Filtration, pp.1-14

A. Prades and &. Membranaire, , 2011.

Y. H. Hsieh and Y. P. Hsieh, Kinetics of

F. , III) reduction by ascorbic acid in aqueous solutions, J

. Agric, Food Chem, vol.48, issue.5, pp.1569-1573, 2000.

S. Pervaiz, M. A. Farrukh, R. Adnan, and F. ,

. Qureshi, Kinetic investigation of redox reaction between vitamin C and ferric chloride hexahydrate in acidic medium, J. Saudi Chem. Soc, vol.16, issue.1, pp.63-67, 2012.

T. Suzuki, F. M. Clydesdale, and T. Pandolf, Solubility of iron in model systems containing organic acids and lignin, J. Food Prot, vol.55, issue.11, pp.893-898, 1992.

L. Grillet, Ascorbate efflux as a new strategy for iron reduction and transport in plants, J. Biol. Chem, vol.289, issue.5, pp.2515-2525, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945537

J. Szpunar, Bio-inorganic speciation analysis by hyphenated techniques, Analyst, vol.125, pp.963-988, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00291437

J. Szpunar, The concept of speciation analysis and hyphenated techniques, 2003.

B. Buszewski and S. Noga, Hydrophilic interaction liquid chromatography ( HILIC ) -a powerful separation technique, Anal Bioanal Chem, vol.402, pp.231-247, 2012.

L. Beuvier, Developpement d'une methode de ( ICP-MS ) : application a l'analyse de speciation des lanthanides, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01381095

M. Montes-bayón, M. Sharar, and M. Corte-rodriguez, Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics, TrAC -Trends Anal. Chem, vol.104, pp.4-10, 2018.

K. Spagou, H. Tsoukali, N. Raikos, H. Gika, and I. ,

G. Wilson and . Theodoridis, Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies, J. Sep. Sci, vol.33, pp.716-727, 2010.

S. Mounicou, J. Szpunar, and R. Lobinski, Metallomics: The concept and methodology, Chem. Soc. Rev, vol.38, pp.1119-1138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01560749

P. Flis, L. Ouerdane, L. Grillet, C. Curie, and S. ,

R. Mari and . Lobinski, Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection, New Phytol, vol.211, pp.1129-1141, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354671

A. F. Lopez-millan, F. Morales, A. Abadia, and J. Abadia, Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport, Plant Physiol, vol.124, pp.873-884, 2000.

T. Eagling, A. L. Neal, S. P. Mcgrath, S. Fairweather-tait, P. R. Shewry et al., Distribution and speciation of iron and zinc in grain of two wheat genotypes, J. Agric. Food Chem, vol.62, pp.708-716, 2014.

Y. F. Xue, Effects of nitrogen on the distribution and chemical speciation of iron and zinc in pearling fractions of wheat grain, J. Agric. Food Chem, vol.62, pp.4738-4746, 2014.

M. Tsednee, Y. W. Mak, Y. R. Chen, and K. ,

. Yeh, A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore-iron complexes in barley, New Phytol, vol.195, pp.951-961, 2012.

G. Weber, N. Von-wirén, and H. Hayen, Hydrophilic interaction chromatography of small metal species in plants using sulfobetaineand phosphorylcholine-type zwitterionic stationary phases, J. Sep. Sci, vol.31, pp.1615-1622, 2008.

S. Mari, Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens, J. Exp. Bot, vol.57, issue.15, pp.4111-4122, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00124925

M. T. Liao, M. J. Hedley, D. J. Woolley, R. R. Brooks, and M. A. Nichols, Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport, Plant Soil, vol.223, pp.243-252

Y. Ando, S. Nagata, S. Yanagisawa, and T. ,

. Yoneyama, Copper in xylem and phloem saps from rice (Oryza sativa)a speciation analysis of coppercontaining compounds, Funct. Plant Biol, vol.40, pp.89-100, 2013.

B. Irtelli, W. A. Petrucci, F. Navari-izzo, ;. R. De-la-fuente, V. Rodriguez et al., Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess, References Amils, vol.60, pp.335-340, 2007.

L. C. Batty, A. J. Baker, B. D. Wheeler, C. , and C. D. , The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis, Cav.) Trin ex. Steudel. Annals of Botany, vol.86, pp.647-653, 2000.

H. F. Bienfait, W. V. Briel, and N. T. Mesland-mul,

N. K. Blute, D. J. Brabander, H. F. Hemond, S. R. Sutton, M. G. Newville et al., , 2004.

J. F. Briat, C. Duc, K. Ravet, and F. Gaymard, , 2010.

, Ferritins and iron storage in plants, Biochimica Et Biophysica Acta-General Subjects, vol.1800, pp.806-814

J. F. Briat, I. Fobis-loisy, N. Grignon, S. Lobréaux, N. Pascal et al., Cellular and molecular aspects of iron metabolism in plants, Biol. Cell, vol.84, pp.69-81, 1995.

J. F. Briat, A. M. Labouré, A. P. Laulhère, A. M. , L. Lobréaux et al., Molecular and cellular biology of plant ferritins. Iron Nutrition in Soils and Plants, pp.265-276, 1995.

J. F. Briat, K. Ravet, N. Arnaud, C. Duc, J. Boucherez et al., , 2010.

H. S. Chang, S. W. Buettner, J. C. Seaman, P. R. Jaffé, P. G. Koster-van-groos et al., , 2014.

C. C. Chen, J. B. Dixon, and F. T. Turner, IRON COATINGS ON RICE ROOTS -MORPHOLOGY AND MODELS OF DEVELOPMENT, Soil Science Society of America Journal, vol.44, pp.1113-1119, 1980.

C. Curie, M. , and S. , New routes for plant iron mining, New Phytologist, vol.214, pp.521-525, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01416822

T. O. De-araujo, D. Freitas-silva, L. Santana, B. V. Kuki, K. N. Pereira et al., Tolerance to iron accumulation and its effects on mineral composition and growth of two grass species, Environmental Science and Pollution Research, vol.21, pp.2777-2784, 2014.

T. O. De-araujo, D. Freitas-silva, L. Santana, B. V. Kuki, K. N. Pereira et al., Morphoanatomical responses induced by excess iron in roots of two tolerant grass species, Environmental Science and Pollution Research, vol.22, pp.2187-2195, 2015.

V. De-la-fuente, L. Rufo, N. Rodríguez, A. Franco, A. et al., Comparison of iron localization in wild plants and hydroponic cultures of Imperata cylindrica, 2017.

P. Beauv, Plant and Soil, vol.418, pp.25-35

C. Dinakar, V. Abhaypratap, S. R. Yearla, A. S. Raghavendra, and K. Padmasree, Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation, Planta, vol.231, pp.461-474, 2010.

H. Feng, W. Zhang, W. Liu, L. Yu, Y. Qian et al., Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone, Environmental Science and Pollution Research, vol.22, pp.18933-18944, 2015.

V. Fuente, L. Rufo, B. H. Juarez, N. Menendez, M. Garcia-hernandez et al., Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv, Journal of Structural Biology, vol.193, pp.23-32, 2016.

M. S. Green and J. R. Etherington, OXIDATION OF FERROUS IRON BY RICE (ORYZA-SATIVA-L) ROOTS -MECHANISM FOR WATERLOGGING TOLERANCE, Journal of Experimental Botany, vol.28, p.678, 1977.

L. Grillet, L. Ouerdane, P. Flis, M. T. Hoang, M. Isaure et al., , 2014.

, Ascorbate efflux as a new strategy for iron reduction and transport in plants, The Journal of biological chemistry, vol.289, pp.2515-2525

C. M. Hansel, S. Fendorf, S. Sutton, and M. Newville, Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants, Environmental Science & Technology, vol.35, pp.3863-3868, 2001.

C. M. Hansel, M. J. La-force, S. Fendorf, and S. Sutton, Spatial and temporal association of As and Fe species on aquatic plant roots, Environmental Science and Technology, vol.36, 1988.

Z. Y. Hu, Y. G. Zhu, M. Li, L. G. Zhang, Z. H. Cao et al., Sulfur (S), 2007.

Y. C. Huang, Z. Chen, and W. J. Liu, Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V), Plant and Soil, vol.352, pp.41-49, 2012.

M. Isaure, S. Huguet, C. Meyer, H. Castillo-michel, D. Testemale et al., Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques, Journal of Experimental Botany, vol.66, pp.3201-3214, 2015.

S. A. Kim, T. Punshon, A. Lanzirotti, L. Li, J. M. Alonso et al., , vol.314, pp.1295-1298, 2006.

G. M. King and M. A. Garey, , 1999.

S. ;. Kuo, . Concurrent, C. Zinc, and O. R. Calcium-by-a-hydrous-ferric-oxide, Soil Science Society of America Journal, vol.50, pp.1412-1419, 1986.

V. Lanquar, F. Lelievre, S. Bolte, C. Hames, C. Alcon et al., , 2005.

L. Jean, M. Schikora, A. Mari, S. Briat, J. F. et al., A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading, Plant J, vol.44, pp.769-782, 2005.

C. H. Lee, Y. C. Hsieh, T. H. Lin, and D. Y. Lee, , 2013.

G. J. Lei, X. F. Zhu, Z. W. Wang, F. Dong, N. Y. Dong et al., , 2014.

J. L. Li, J. Hu, C. X. Ma, Y. Q. Wang, C. Wu et al., Uptake, translocation and physiological effects of magnetic iron oxide (gamma-Fe2O3) nanoparticles in corn (Zea mays L.), Chemosphere, vol.159, pp.326-334, 2016.

J. G. Liu, X. M. Leng, M. X. Wang, Z. Q. Zhu, and Q. H. Dai, Iron plaque formation on roots of different rice cultivars and the relation with lead uptake, Ecotoxicology and Environmental Safety, vol.74, pp.1304-1309, 2011.

W. J. Liu, Y. G. Zhu, Y. Hu, P. N. Williams, A. G. Gault et al., , 2006.

, Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants, Oryza Sativa L

, Environmental Science and Technology, vol.40, pp.5730-5736

S. Lobréaux, O. Massenet, and J. F. Briat, Iron induces ferritin synthesis in maize plantlets, Plant Mol. Biol, vol.19, pp.563-575, 1992.

R. Meguro, Y. Asano, S. Odagiri, C. Li, H. Iwatsuki et al., The presence of ferric and ferrous iron in the nonheme iron store of resident macrophages in different tissues and organs: histochemical demonstrations by the perfusion-Perls and -Turnbull methods in the rat, Arch Histol Cytol, vol.68, pp.171-183, 2005.

C. Muller, K. N. Kuki, D. T. Pinheiro, L. R. De-souza, A. I. Silva et al., Differential physiological responses in rice upon exposure to excess distinct iron forms, Plant and Soil, vol.391, pp.123-138, 2015.

T. Nozoye, S. Nagasaka, T. Kobayashi, M. Takahashi, Y. Sato et al., Phytosiderophore Efflux Transporters Are Crucial for Iron Acquisition in Graminaceous Plants, Journal of Biological Chemistry, vol.286, pp.5446-5454, 2011.

T. Pardo, D. Martínez-fernández, C. De-la-fuente, R. Clemente, M. Komárek et al., , 2016.

, Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis, Environmental Pollution, vol.219, pp.296-304

E. G. Pereira, M. A. Oliva, A. I. Siqueira-silva, L. Rosado-souza, D. T. Pinheiro et al., TROPICAL RICE CULTIVARS FROM LOWLAND AND UPLAND CROPPING SYSTEMS DIFFER IN IRON PLAQUE FORMATION, Journal of Plant Nutrition, vol.37, pp.1373-1394, 2014.

N. Pi, N. F. Tam, and M. H. Wong, Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants, Marine Pollution Bulletin, vol.63, pp.402-411, 2011.

K. Ravet, B. Touraine, J. Boucherez, J. F. Briat, F. Gaymard et al., , 2008.

K. Ravet, B. Touraine, S. A. Kim, F. Cellier, S. Thomine et al., , 2009.

. Post-translational, Regulation of AtFER2 Ferritin in Response to Intracellular Iron Trafficking during Fruit Development in Arabidopsis, Molecular Plant, vol.2, p.1095

K. N. Raymond, E. A. Dertz, and S. S. Kim, Enterobactin: an archetype for microbial iron transport, Proc Natl Acad Sci U S A, vol.100, pp.3584-3588, 2003.

N. R. Redekar, R. M. Biyashev, R. V. Jensen, R. F. Helm, E. A. Grabau et al., , 2015.

R. D. Reeves, A. J. Baker, T. Jaffré, P. D. Erskine, G. Echevarria et al., , 2018.

N. Rodriguez, N. Menendez, J. Tornero, R. Amils, and V. De-la-fuente, Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization, New Phytologist, vol.165, pp.781-789, 2005.

H. Roschzttardtz, G. Conejero, C. Curie, M. , and S. , Identification of the Endodermal Vacuole as the Iron Storage Compartment in the Arabidopsis Embryo, Plant Physiology, vol.151, pp.1329-1338, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00445498

H. Roschzttardtz, G. Conejero, F. Divol, C. Alcon, J. Verdeil et al., , 2013.

D. E. Salt, R. C. Prince, and I. J. Pickering, , 2002.

, Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy

, Microchemical Journal, vol.71, pp.255-259

B. V. Santana, T. O. De-araujo, G. C. Andrade, D. Freitas-silva, L. Kuki et al., Science and Pollution Research, vol.21, pp.2550-2562, 2014.

G. Sarret, E. Smits, H. C. Michel, M. P. Isaure, F. J. Zhao et al., Use of Synchrotron-Based Techniques to Elucidate Metal Uptake and Metabolism in Plants, Advances in Agronomy, vol.119, p.1, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01556359

A. C. Senn, R. Kaegi, S. J. Hug, J. G. Hering, S. Mangold et al., Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: Interdependent effects of phosphate, silicate and Ca, Geochimica Et Cosmochimica Acta, vol.162, pp.220-246, 2015.

R. E. Snowden and B. D. Wheeler, Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance, New Phytologist, vol.131, pp.503-520, 1995.

L. Stcyr, D. Fortin, and P. G. Campbell, , 1993.

. Microscopic, . Of, . Iron, . Of, . Submerged et al., Aquatic Botany, vol.46, pp.155-167

R. J. Stein, S. I. Lopes, and J. P. Fett, Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars, Theoretical and Experimental Plant Physiology, vol.26, pp.135-146, 2014.

O. Strasser, K. Kohl, and V. Romheld, , 1999.

G. J. Taylor and A. A. Crowder, USE OF THE DCB TECHNIQUE FOR EXTRACTION OF HYDROUS IRON-OXIDES FROM ROOTS OF WETLAND PLANTS, American Journal of Botany, vol.70, pp.1254-1257, 1983.

G. J. Taylor, A. A. Crowder, and R. Rodden, , 1984.

A. Formation and . Solution, CULTURE. American Journal of Botany, vol.71, pp.666-675

C. Tian, C. Wang, Y. Tian, X. Wu, X. et al., , 2015.

R. D. Tripathi, P. Tripathi, S. Dwivedi, A. Kumar, A. Mishra et al.,

A. Van-der-ent, A. J. Baker, R. D. Reeves, A. J. Pollard, and H. Schat, Hyperaccumulators of metal and metalloid trace elements: Facts and fiction, Plant and Soil, vol.362, pp.319-334, 2013.

D. Vantelon, N. Trcera, D. Roy, T. Moreno, D. Mailly et al., The LUCIA beamline at SOLEIL, Journal of Synchrotron Radiation, vol.23, pp.635-640, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01685234

A. Voegelin, A. C. Senn, R. Kaegi, S. J. Hug, and S. Mangold, , 2013.

T. Wang and J. H. Peverly, Oxidation states and fractionation of plaque iron on roots of common reeds, Soil Science Society of America Journal, vol.60, pp.323-329, 1996.

T. Wang and J. H. Peverly, Iron oxidation states on root surfaces of a wetland plant (Phragmites australis), Soil Science Society of America Journal, vol.63, pp.247-252, 1999.

P. N. Williams, J. Santner, M. Larsen, N. J. Lehto, E. Oburger et al., Localized Flux Maxima of Arsenic, Lead, and Iron around Root Apices in Flooded Lowland Rice, Environmental Science & Technology, vol.48, pp.8498-8506, 2014.

D. F. Xu, J. M. Xu, Y. He, and P. M. Huang, Effect of Iron Plaque Formation on Phosphorus Accumulation and Availability in the Rhizosphere of Wetland Plants, Water Air and Soil Pollution, vol.200, pp.79-87, 2009.

Y. Xu, X. Sun, Q. Zhang, X. Li, Y. et al., Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions, Ecotoxicology and Environmental Safety, vol.153, pp.91-100, 2018.

Y. Q. Ye, C. W. Jin, S. K. Fan, Q. Q. Mao, C. L. Sun et al., Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall, Scientific Reports, vol.5, p.13, 2015.

Y. Zhang, Y. H. Xu, H. Y. Yi, and J. M. Gong, , 2012.

, Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice, Plant Journal, vol.72, pp.400-410