G. J. Pottie and W. J. Kaiser, Wireless integrated network sensors, Commun. ACM, vol.43, issue.5, pp.51-58, 2000.

J. Rabaey, M. Ammer, J. Silva, J. L. , D. Patel et al., Picoradio supports ad hoc ultra-low power wireless networking, Computer, vol.33, issue.7, pp.42-48, 2000.

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks, Communications Magazine, IEEE, vol.40, issue.8, p.6, 2002.

J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, Real-time communication and coordination in embedded sensor networks, Proceedings of the IEEE, vol.91, issue.7, pp.1002-1022, 2002.

J. Zheng and A. Jamalipour, Wireless Sensor Networks: A Networking Perspective, vol.2, p.4, 2009.

M. C. Ian and F. Akyildiz, Wireless Sensor Networks, p.4, 2010.

C. P. Waltenegus-dargie, Fundamentals of Wireless Sensor Networks: Theory and Practice, 2004.

K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, 2007.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh et al., Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet, 2002.

A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang et al., A line in the sand: A wireless sensor network for target detection, classification, and tracking, Comput. Netw, vol.46, issue.5, pp.605-634, 2004.

S. H. Lee, S. Lee, H. Song, and H. S. Lee, Wireless sensor network design for tactical military applications : Remote large-scale environments, Military Communications Conference, pp.1-7, 2009.

M. Labrador and P. Wightman, Topology control, Topology Control in Wireless Sensor Networks, pp.61-70, 2009.

,

L. Feeney and M. Nilsson, Investigating the energy consumption of a wireless network interface in an ad hoc networking environment, INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, vol.3, pp.1548-1557, 2001.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks, Wirel. Netw, vol.8, issue.5, pp.481-494, 2002.

,

M. Sichitiu, Cross-layer scheduling for power efficiency in wireless sensor networks, INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol.3, pp.1740-1750, 2004.

S. Singh and C. S. Raghavendra, Pamas—power aware multiaccess protocol with signalling for ad hoc networks, SIGCOMM Comput

, Commun. Rev, vol.28, issue.3, pp.5-26, 1998.

I. Demirkol, C. Ersoy, and F. Alagoz, Mac protocols for wireless sensor networks: a survey, Communications Magazine, IEEE, vol.44, issue.4, pp.115-121, 2006.

P. Dutta, S. Dawson-haggerty, Y. Chen, C. M. Liang, and A. Terzis, Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless, Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys '10, pp.1-14, 2010.

G. Lu, B. Krishnamachari, and C. S. Raghavendra, An adaptive energy-efficient and low-latency mac for tree-based data gathering in sensor networks: Research articles, Wirel. Commun. Mob. Comput, vol.7, issue.7, p.109, 2007.

J. Polastre, J. Hill, and D. Culler, Versatile low power media access for wireless sensor networks, Proceedings of the 2Nd International Conference on Embedded Networked Sensor Systems, ser. SenSys '04, vol.9, p.79, 2004.

T. Van-dam and K. Langendoen, An adaptive energy-efficient mac protocol for wireless sensor networks, Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, ser. SenSys '03, vol.21, p.42, 2003.

W. Ye, J. Heidemann, and D. Estrin, Medium access control with coordinated adaptive sleeping for wireless sensor networks, IEEE/ACM Trans. Netw, vol.12, issue.3, p.42, 2004.

M. Buettner, G. V. Yee, E. Anderson, and R. Han, X-mac: A short preamble mac protocol for duty-cycled wireless sensor networks, Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, ser. SenSys '06, vol.27, p.79, 2006.

A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, Mac essentials for wireless sensor networks, Commun. Surveys Tuts, vol.12, issue.2, pp.222-248, 2010.

M. Khanafer, M. Guennoun, and H. Mouftah, A survey of beacon-enabled ieee 802.15.4 mac protocols in wireless sensor networks, Communications Surveys Tutorials, IEEE, vol.16, issue.2, pp.856-876

, Low-rate wireless personal area networks (lr-wpans) amendment 1: Mac sublayer, IEEE Std, vol.4, p.16, 2012.

A. Grilo, M. Macedo, and M. Nunes, An energy-efficient low-latency multi-sink mac protocol for alarm-driven wireless sensor networks," in Wireless Systems and Mobility in Next Generation Internet, ser. Lecture Notes in Computer Science, vol.4396, pp.87-101, 2007.

, , p.42

V. Rajendran, K. Obraczka, and J. Garcia-luna-aceves, Energy-efficient, collision-free medium access control for wireless sensor networks, Wireless Networks, vol.12, issue.1, p.42, 2006.

S. Ray, I. Demirkol, and W. Heinzelman, Supporting bursty traffic in wireless sensor networks through a distributed advertisement-based tdma protocol (atma), vol.40, p.42, 2012.

A. Makhoul, R. Saadi, and C. Pham, Risk management in intrusion detection applications with wireless video sensor networks, IEEE WCNC, vol.12, p.43, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530724

B. N. , .. S. Anis-koubaa, and M. Alves, Improving the ieee 802.15.4 slotted csma/ca mac for timecritical events in wireless sensor networks, Proc. of the 2nd Workshop on Real Time Networks, vol.19, pp.574-579, 2006.

C. Q. Peng-lin and X. Wang, Medium access control with a dynamic duty cycle for sensor networks, Wireless Communications and Networking Conference, vol.3, p.22, 2004.

S. Zhuo, Z. Wang, Y. Song, Z. Wang, and L. Almeida, iqueue-mac: A traffic adaptive duty-cycled mac protocol with dynamic slot allocation, Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2013 10th Annual IEEE Communications Society Conference on, pp.95-103, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905822

J. Ansari, J. Riihijarvi, P. Mahonen, and J. Haapola, Implementation and performance evaluation of nanomac; a low power mac solution for high density wireless sensor networks, Int. J. Sen. Netw, vol.2, issue.5/6, pp.341-349, 2007.

Y. W. Li, Y. , and J. Heidemann, Energy and latency control in low duty cycle mac protocols, p.25, 2005.

C. Enz, A. El-hoiydi, J. Decotignie, and V. Peiris, Wisenet: an ultralowpower wireless sensor network solution, Computer, vol.37, issue.8, p.108, 2004.

A. El-hoiydi, Spatial tdma and csma with preamble sampling for low power ad hoc wireless sensor networks, Proceedings of the Seventh International Symposium on Computers and Communications (ISCC'02)

D. C. Washington and . Usa, , p.685, 2002.

A. Dunkels, The contikimac radio duty cycling protocol, p.27, 2011.

A. El-hoiydi, Aloha with preamble sampling for sporadic traffic in ad hoc wireless sensor networks, IEEE International Conference on, vol.5, p.28, 2002.

N. Abramson, The aloha system: Another alternative for computer communications, Proceedings of the, pp.281-285, 1970.

I. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu, Z-mac: A hybrid mac for wireless sensor networks, IEEE/ACM Transactions on, vol.16, issue.3, p.38, 2008.

I. Rhee, A. C. Warrier, and L. Xu, Randomized dining philosophers to tdma scheduling in wireless sensor networks, Tech. Rep, p.30, 2004.

B. Nefzi and Y. Song, Qos for wireless sensor networks: Enabling service differentiation at the mac sub-layer using cosens, Ad Hoc Networks (II), vol.10, p.109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00645512

M. Caccamo, L. Zhang, L. Sha, and G. Buttazzo, An implicit prioritized access protocol for wireless sensor networks, Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, vol.33, pp.39-48, 2002.

L. Bao and J. J. Garcia-luna-aceves, A new approach to channel access scheduling for ad hoc networks, Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, ser. MobiCom '01, pp.210-221, 2001.

, Wireless Sensor Networks, ser, Lecture Notes in Computer Science, vol.3868, p.35, 2006.

S. Ergen and P. Varaiya, Pedamacs: power efficient and delay aware medium access protocol for sensor networks, Mobile Computing, vol.5, p.35, 2006.

R. Mangharam, A. Rowe, and R. Rajkumar, Firefly: A cross-layer platform for real-time embedded wireless networks, Real-Time Syst, vol.37, issue.3, pp.183-231, 2007.

J. Chen, P. Zhu, and Z. Qi, Pr-mac: Path-oriented real-time mac protocol for wireless sensor network, Embedded Software and Systems, ser. Lecture Notes in Computer Science, vol.4523, pp.530-539, 2007.

T. Watteyne, I. Augé-blum, and S. Ubéda, Dual-mode real-time mac protocol for wireless sensor networks: A validation/simulation approach, Proceedings of the First International Conference on Integrated Internet Ad Hoc and Sensor Networks, ser. InterSense '06, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00405095

,

B. Jang, J. B. Lim, and M. L. Sichitiu, An asynchronous scheduled mac protocol for wireless sensor networks, Computer Networks, vol.57, issue.1, p.79, 2013.

W. Ye, F. Silva, and J. Heidemann, Ultra-low duty cycle mac with scheduled channel polling, Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, ser. SenSys '06, pp.321-334, 2006.

L. Sitanayah, C. J. Sreenan, and K. N. Brown, A hybrid mac protocol for emergency response wireless sensor networks, Ad Hoc Networks, vol.20, issue.0, p.42, 2014.

Y. Sun, S. Du, O. Gurewitz, and D. B. Johnson, Dw-mac: A low latency, energy efficient demand-wakeup mac protocol for wireless sensor networks, Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ser. MobiHoc '08, vol.38, p.66, 2008.

S. Du, A. Saha, and D. Johnson, Rmac: A routing-enhanced duty-cycle mac protocol for wireless sensor networks, INFOCOM 2007. 26th IEEE International Conference on Computer Communications, vol.38, pp.1478-1486, 2007.

P. J. Shin, J. Park, and A. C. Kak, A predictive duty cycle adaptation framework using augmented sensing for wireless camera networks, ACM Trans. Sen. Netw, vol.10, issue.2, 2014.

E. Egea-lopez, J. Vales-alonso, A. S. Martinez-sala, J. Garcia-haro, P. Pavon-marino et al., A wireless sensor networks mac protocol for real-time applications, Personal Ubiquitous Comput, vol.12, issue.2, pp.111-122, 2008.

S. Ray, I. Demirkol, and W. Heinzelman, Adv-mac: Analysis and optimization of energy efficiency through data advertisements for wireless sensor networks, Ad Hoc Netw, vol.9, issue.5, p.41, 2011.

D. Nguyen, L. Q. Tran, O. Berder, and O. Sentieys, A low-latency and energy-efficient mac protocol for cooperative wireless sensor networks, Global Communications Conference (GLOBECOM), p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931828

O. Dousse, C. Tavoularis, and P. Thiran, Delay of intrusion detection in wireless sensor networks, Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, ser. MobiHoc '06, pp.155-165, 2006.

A. Czarlinska and D. Kundur, Wireless image sensor networks: event acquisition in attack-prone and uncertain environments, Multidimensional Systems and Signal Processing, vol.20, pp.135-164, 2009.

,

E. Pignaton-de-freitas, T. Heimfarth, C. Pereira, A. Ferreira, F. Wagner et al., Evaluation of coordination strategies for heterogeneous sensor networks aiming at surveillance applications, Sensors, vol.46, pp.591-596, 2009.

M. Alaei and J. Barcelo-ordinas, Priority-based node selection and scheduling for wireless multimedia sensor networks, Wireless and Mobile Computing, Networking and Communications (WiMob), 2010 IEEE 6th International Conference on, vol.46, pp.151-158, 2010.

S. Paniga, L. Borsani, A. Redondi, M. Tagliasacchi, and M. Cesana, Experimental evaluation of a video streaming system for wireless multimedia sensor networks, Ad Hoc Networking Workshop (Med-Hoc-Net), vol.46, pp.165-170, 2011.

I. Butun, S. Morgera, and R. Sankar, A survey of intrusion detection systems in wireless sensor networks, Communications Surveys Tutorials, IEEE, vol.16, issue.1, pp.266-282, 2014.

H. Gupta, Z. Zhou, S. Das, and Q. Gu, Connected sensor cover: self-organization of sensor networks for efficient query execution, IEEE/ACM Transactions on, vol.14, issue.1, pp.55-67, 2006.

S. Shakkottai, R. Srikant, and N. Shroff, Unreliable sensor grids: coverage, connectivity and diameter, INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, vol.2, p.46, 2003.

T. Yan, T. He, and J. A. Stankovic, Differentiated surveillance for sensor networks, Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, ser. SenSys '03, pp.51-62, 2003.

Y. Zhu and L. Ni, Probabilistic approach to provisioning guaranteed qos for distributed event detection, INFOCOM 2008. The 27th Conference on Computer Communications, p.47, 2008.

C. Pham, A. Makhoul, and R. Saadi, Risk-based adaptive scheduling in randomly deployed video sensor networks for critical surveillance applications, Journal of Network and Computer Applications, vol.34, issue.2, p.59, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00530355

C. Pham and A. Makhoul, Performance study of multiple cover-set strategies for mission-critical video surveillance with wireless video sensors, Wireless and Mobile Computing, Networking and Communications (WiMob), vol.48, p.50, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530727

C. Pham, ;. Aguilera, H. Yu, N. Vaidya, V. Srinivasan et al., Scheduling randomly-deployed heterogeneous video sensor nodes for reduced intrusion detection time, Distributed Computing and Networking, ser. Lecture Notes in Computer Science, vol.6522, pp.303-314, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00530743

C. Pham, Network lifetime and stealth time of wireless video sensor intrusion detection systems under risk-based scheduling, Wireless and Pervasive Computing (ISWPC), vol.54, pp.1-6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01093548

C. Pham, Low cost wireless image sensor networks for visual surveillance and intrusion detection applications, 12th IEEE International Conference on Networking, Sensing and Control (ICNSC), p.57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01912903

C. Pham, An image sensor board based on arduino due and ucamii camera

C. Merlin and W. Heinzelman, Schedule adaptation of low-power-listening protocols for wireless sensor networks, Mobile Computing, vol.9, p.79, 2010.

, Mission critical intrusion detection system

, The communication protocol stack

, Multiple camera system developed in our team's work, p.12

. .. , 17 2.2 IEEE 802.15.4 beacon-enabled SuperFrame structure, vol.18

, 20 2.4 TMAC downsizes active period lengths to further save energy. The arrows in the figure indicate transmitted and received frames

. .. , 23 2.6 The basic idea of the iQueue-MAC. A variable TDMA period and a CSMA period are integrated to handle adaptive traffic, p.24

, Conceptual depiction of WiseMAC [36]

, An example of XMAC: Source node A transmitting to Destination node B

. Low and . .. Preamble-sampling, 29 2.10 A data gathering tree and its DMAC implementation, p.30

, An example of how CoSenS works [43]

. .. General, , p.33

. Node and . .. Coversets,

.. .. Dynamic,

. .. Bezier-curve,

, The Behavior curve functions

, Bezier curve for high-criticality level

, Bezier curve for low-criticality level

, Image sensor built with Arduino (Due or MEGA) and uCAM camera 57

, Criticality model having criticality level of 0.8 adapted to the image sensor hardware

, Criticality model having criticality level of 0.2 adapted to the image sensor hardware

, Node's frame capture rate under the criticality scheduling with criticality level 0

, Node's frame capture rate under the criticality scheduling with criticality level of 0

. .. , Mission-critical intrusion detection system, p.65

. .. , Active and Sleep periods of the MAC layer, p.66

. .. , Sentry node selection at the end of phase 1, p.67

. .. Criticality-curve-example,

, Duty cycle of follower nodes

. .. Snapshot-of-the-omnet++-simulator, , p.70

. .. , 73 4.9 Number of acknowledgements received per intrusion for sentry node 10 74 4.10 Number of sentries whose alerts are acknowledged by 1, 2, 3 or 4 followers 74 4.11 Number of missed alert messages, vol.87

. .. , 71 5.1 Total consumed power in Joules for all 5 follower nodes per cycle (3000 ms)