
HAL Id: tel-02470779
https://univ-pau.hal.science/tel-02470779

Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Semantic-Based Framework for Processing Complex
Events in Multimedia Sensor Networks.

Chinnapong Angsuchotmetee

To cite this version:
Chinnapong Angsuchotmetee. A Semantic-Based Framework for Processing Complex Events in Mul-
timedia Sensor Networks.. Computer Science [cs]. Université de Pau et des Pays de l’Adour, 2017.
English. �NNT : �. �tel-02470779�

https://univ-pau.hal.science/tel-02470779
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE PAU ET DES PAYS DE L’ADOUR

Doctoral School Ecole Doctorale Sciences exactes et leurs applications (ED211)

University Department Laboratoire d’Informatique de l’Université de Pau et des Pays de l’Adour (LIUPPA)

Thesis defended by Chinnapong ANGSUCHOTMETEE

Defended on 22
nd

 December, 2017

In order to become Doctor from Université de Pau et des Pays de l’Adour

Academic Field Computer Science

Thesis Title

A Semantic-Based Framework for

Processing Complex Events in

Multimedia Sensor Networks

Thesis supervised by

Richard CHBEIR
Yudith CARDINALE
Shohei YOKOYAMA

Supervisor
Co-Supervisor
Co-Monitor

Committee members

Referees Maude MANOUVRIER PSL Research University - Université

 Paris-Dauphine

 Ahmed MOSTEFAOUI Université de Franche-Comté

Examiners Djamal BENSLIMANE Claude Bernard University of Lyon 1

 Congduc PHAM Université de Pau et des Pays de l’Adour

Supervisors Richard CHBEIR Université de Pau et des Pays de l’Adour
 Yudith CARDINALE Universidad Simón Bolívar
 Shohei YOKOYAMA Shizuoka University

The Université de Pau et des Pays de l’Adour neither endorse nor censure authors’ opinions
expressed in the theses: these opinions must be considered to be those of their authors.

Acknowledgements

First of all, I would like to use this chance to give my thanks to everyone who makes it possible for me to
come all the way from Thailand to pursue Ph.D. in France. First, I would like to express my gratitude to
Franco-Thai Organization of Thailand who helped me to start it all. Without the help of Franco-Thai
organization, it would not possible for me to meet my current advisor, Prof. Richard Chbeir. Furthermore,
Franco-Thai organization also helps to arrange the co-financing contract with Prince of Songkla
University for me which leads me to have a position at the university as a full-time lecturer after
graduating. I am looking forward to making some contribution to the organization later in near future
when I am going back to Thailand to return all the support that I got. Next, I would like to pass my
gratitude and my regard to everyone from Prince of Songkla University. I am looking forward to working
with everyone at the university to return all the support I got during all the period of my studies.

Also, I would like to use this chance to thanks all my advisors, co-advisors and every collaborator I
work with throughout my study. First, I would like to thank Prof. Richard Chbeir for accepting me in.
Thanks a lot for all the advice you give during all these years. Your standard is not an easy one for me to
match up to. However, because of the fact that you have never skipped any small details, I really have to
step outside my comfort zone and push myself a lot in order to match up to you. In the end, I learn a lot
from you. This will not happen if I were to stay only in my comfort zone working as a developer all the
time. I look forward to continuing to work with you on some possible future project. Beside my advisor
Prof. Richard Chbeir, I would like to give my big thanks to my co-advisor Prof. Yudith Cardinale and Prof.
Shohei Yokoyama. You both contribute a lot to this dissertation. Yudith is always someone which I can
always rely on when I need an advice on formulating my idea scientifically. Shohei’s advice on the
algorithm design, implementation, and practical aspect of the contributions are always correct and on
point. I would not be able to finish all of these contributions alone without all the advice from you both.

Next, I would like to pass my thanks to everyone from Université de Pau et des Pays de l’Adour,
especially all l’ED211 officers who always there when I need some help and always excuse me when I
cannot communicate well in French. Also, I would like to thanks, all of my French teachers from Alliance
Francais de Bangkok and CLEREMO of IUT de Bayonne who helps me to learn the French language. I
would be able to learn all the language myself without all the help from you all.

Last, but not least, I would like to thanks, everyone whose I met during all my four years in
Bayonne and Pau. Thanks a lot to everyone in IUT de Bayonne, all the professors, officers and all
laboratory colleagues whose make my four years here pleasant. Thanks for always being so
supportive of me. All my friends from LIUPPA and every student I met all the past four years, I will
not forget any of you and make sure to remember all the time we spent together. Finally, my
special thanks go to everyone from my fencing team, Anglet Olympique Escrime. You all help me
to finish this dissertation while keeping myself remain fit both physically and mentally.

Thanks a lot everyone, I promise that this will not be the last time that we meet. I look
forward to come back to see everyone and continue to work with you in near future.

v

vi Acknowledgements

Abstract vii

A SEMANTIC-BASED FRAMEWORK FOR PROCESSING COMPLEX EVENTS IN MULTIMEDIA SENSOR NET-WORKS

Abstract

The dramatic advancement of low-cost hardware technology, wireless communications, and digital electronics
have fostered the development of multifunctional (wireless) Multimedia Sensor Networks (MSNs). Those latter
are composed of interconnected devices able to ubiquitously sense multimedia content (video, image, audio,
etc.) from the environment. Thanks to their interesting features, MSNs have gained increasing attention in
recent years from both academic and industrial sectors and have been adopted in wide range of application
domains (such as smart home, smart office, smart city, to mention a few). One of the advantages of adopting
MSNs is the fact that data gathered from related sensors contains rich semantic information (in comparison
with using solely scalar sensors) which allows to detect complex events and copes better with application
domain requirements. However, modeling and detecting events in MSNs remain a difficult task to carry out
because translating all gathered multimedia data into events is not straightforward and challenging.
In this thesis, a full-fledged framework for processing complex events in MSNs is proposed to avoid
hard-coded algorithms. The framework is called Complex Event Modeling and Detection (CEMiD)
framework. Core components of the framework are:

• MSSN-Onto: a newly proposed ontology for modeling MSNs,

• CEMiD-Language: an original language for modeling multimedia sensor networks and events to be
detected, and

• GST-CEMiD: a semantic pipelining-based complex event processing engine.

CEMiD framework helps users model their own sensor network infrastructure and events to be detected
through CEMiD language. The detection engine of the framework takes all the model provided by users
to initiate an event detection pipeline for extracting multimedia data feature, translating semantic
information, and interpret into events automatically. Our framework is validated by means of prototyping
and simulations. The results show that our framework can properly detect complex multimedia events in
a high work-load scenario (with average detection latency for less than one second).

Keywords: multimedia sensor networks, complex event processing, semantic web, ontology

Laboratoire d’Informatique de l’Université de Pau et des Pays de l’Adour (LIUPPA)

– – – – –

viii Abstract

Résumé

Les progrès de la technologie des capteurs, des communications sans fil et de l’Internet des Objets ont favorisé le
développement des réseaux de capteurs multimédias. Ces derniers sont composés de capteurs interconnectés
capables de fournir de façon omniprésente un suivi fin d’un espace connecté. Grâce à leurs propriétés, les réseaux
de capteurs multimédias ont suscité un intérêt croissant ces dernières années des secteurs académiques et
industriels et ont été adoptés dans de nombreux domaines d’application (tels que la maison intelligente, le bureau
intelligent, ou la ville intelligente). L’un des avantages de l’adoption des réseaux de capteurs multimédias est le fait
que les données collectées (vidéos, audios, images, etc.) à partir de capteurs connexes contiennent des informations
sémantiques riches (en comparaison avec des capteurs uniquement scalaires) qui permettent de détecter des
événements complexes et de mieux gérer les exigences du domaine d’application. Toutefois, la modélisation et la
détection des événements dans les reséaux de capteurs multimédias restent une tâche difficile à réaliser, car la
traduction de toutes les données multimédias collectées en événements n’est pas simple.

Dans cette thèse, un framework complet pour le traitement des événements complexes dans les réseaux de capteurs

multimédias est proposé pour éviter les algorithmes codés en dur et pour permettre une meilleure adaptation aux

évolution des besoins d’un domaine d’application. Le Framework est appelé CEMiD et composé de :

• MSSN-Onto : une ontologie nouvellement proposée pour la modélisation des réseaux de capteurs,

• CEMiD-Language : un langage original pour la modélisation des réseaux de capteurs multimédias
et des événements à détecter, et

• GST-CEMiD : un moteur de traitement d’événement complexe basé sur un pipeline sémantique.

Le framework CEMiD aide les utilisateurs à modéliser leur propre infrastructure de réseau de capteurs et les événements

à détecter via le langage CEMiD. Le moteur de détection du framework prend en entrée le modèle fourni par
les utilisateurs pour initier un pipeline de détection d’événements afin d’extraire des données multimédias
correspondantes, de traduire des informations sémantiques et de les traduire automatiquement en
événements. Notre framework est validé par des prototypes et des simulations. Les résultats montrent que
notre framework peut détecter correctement les événements multimédias complexes dans un scénario de
charge de travail élevée (avec une latence de détection moyenne inférieure à une seconde).

Mots clés : réseaux de capteurs multimédias, traitement des événements complexes, web sémantique, ontologie

Table of Contents

Acknowledgements v

Abstract vii

Table of Contents ix

List of Tables xiii

List of Figures xv

Introduction xvii
Background . xvii
Contributions . xviii
Publications . xix

Structure of the Dissertation . xix

1 Multimedia Sensor Network and Complex Event Processing: Preliminaries 1

1.1 Multimedia Sensor Networks . 1

1.2 Complex Event Processing . 2

1.3 Multimedia Sensor Networks and Complex Event Processing: Motivating Scenario . . . 3

2 Related Studies on Complex Event Processing in Multimedia Sensor Networks 7

2.1 Sensor Network Modeling . 7

 2.1.1 Relational Database Approach . 7

 2.1.2 Graph Database Approach . 8

 2.1.3 Ontology-based Approach . 10

2.2 Multimedia Data Modeling and Retrieval . 11

 2.2.1 Relation Database Oriented Multimedia Data Modeling and Retrieval 12

 2.2.2 Linked Data-Oriented Multimedia Data Modeling and Retrieval 13

 2.2.3 Ontology Based Multimedia Data Modeling and Retrieval 14

2.3 Complex Event Processing Engine . 15

 2.3.1 Complex Event Operators . 15

 2.3.2 Syntaxes and Styles of CEP languages . 16

 2.3.3 Logic Languages . 18

2.4 Comparative Analysis . 19

ix

x Table of Contents

3 CEMiD Framework: Overview 21

 3.1 Architecture Overview of the CEMiD Framework . 21

 3.1.1 Repository . 22

 3.1.2 CEMiD Interpreter . 22

 3.1.3 Data Preprocessor . 23

 3.1.4 Complex Event Processing Engine . 23

 3.2 Discussion . 23

4 MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks 25

 4.1 Analysis of the missing features of the SSN ontology 25

 4.2 Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 28

 4.2.1 Floor plan/coverage area modeling extension 29

 4.2.2 Multimedia sensor modeling extension . 30

 4.2.3 Multimedia sensor data modeling extension . 33

 4.2.4 Atomic/complex modeling extension . 35

 4.2.5 Discussion . 38

 4.3 Aligning MSSN-Onto with Application Domain Ontologies 38

 4.4 Validation: Application of the MSSN-Onto in a real-world scenario 39

 4.4.1 Generality Evaluation . 40

 4.4.2 Modeling Capacity Evaluation . 45

 4.4.3 Retrieval Performance Evaluation . 49

 4.5 Conclusion . 53

5 Complex Event Modeling and Detection (CEMiD) Language 55

 5.1 CEMiD Language . 55

 5.1.1 Multimedia Sensor Network Infrastructure Modeling 55

 5.1.2 Event Modeling . 59

 5.1.3 Action/Report Syntax . 62

 5.2 CEMiD Language: JSON Serialization . 64

 5.3 CEMiD Language Processing . 66

 5.3.1 SPARQL predicates for modeling a location map 67

 5.3.2 SPARQL predicates for modeling sensor network infrastructure 68

 5.3.3 SPARQL predicates for modeling events . 70

 5.4 Validation . 71

 5.5 Conclusion . 72

6 GST-CEMiD 73

 6.1 Algorithms for Processing Complex Events of the CEMiD framework 73

 6.2 GST-CEMiD: A Pipeline-Based Complex Event Processing Engine for CEMiD Framework 77
 6.2.1 GStreamer Framework . 78

 6.2.2 gst-cemid plugin . 78

 6.3 Experiments . 80

 6.3.1 Impact of the number of sensors . 80

 6.3.2 Impact of sensor sampling frequency . 82

 6.3.3 Impact of number of operators . 82

 6.3.4 Discussion . 84

Table of Contents xi

7 Conclusion and Future Work 85

7.1 Conclusion . 85

 7.1.1 Analysis of existing solutions and related studies 85

 7.1.2 Contributions . 85

7.2 Future Work . 86

 7.2.1 Technical directions for the possible future work 86

 7.2.2 Scientific directions for the possible future work 87

Bibliography 89

Resumé 95

xii Table of Contents

List of Tables

1.1 Comparison between Scalar Sensors and Multimedia Sensors 1

1.2 Complex events and their atomic events in smart energy management and smart office

surveillance applications
. 5

2.1 Comparative Analysis of Previous Studies Against the Requirements on processing com-

plex events in a multimedia sensor network
. 20

3.1 Comparative Analysis of CEMiD Framework Features Against Requirements on Complex

Event Processing in MSNs . 24

4.1 List of predefined media descriptors in MSSN-Onto . 34

4.2 AMI Corpus Directory Structure for a Meeting Session 45

4.3 List of events and their description . 47

4.4 Event Detection Accuracy Result . 48

4.5 ABox Size for each query in AMI Corpus experiment 50

4.6 Overhead size (in MBytes) according to the number of sensors and number of media

descriptors . 51

4.7 ABox Size for each experiment according to number of sensors and numbers of media

descriptors . 52

5.1 Query Size and Compactness Percentage
. 72

6.1 Allen’s Interval Algebra Operators . 76

xiii

xiv List of Tables

List of Figures

1.1 Complex Event Processing (CEP) Engine
. 3

1.2 Smart Office with Multimedia Sensors Installed . 4

2.1 Semantic Sensor Network SSN Ontology . 10

2.2 Temporal Operators according to Allen’s Temporal Algebra 16

3.1 Architecture of the CEMiD framework . 21

4.1 The SOSA/SSN Ontology (Observation Perspective) . 26

4.2 Multimedia Sensor Network Ontology (MSSN-Onto)
. 28

4.3 Illustration on location map modeling by using the MSSN-Onto 30

4.4 Predefined Sensor Type in MSSN-Onto . 31

4.5 Illustration on instantiating sensors in the MSSN-Onto 32

4.6 Illustration of multimedia data modeling with MSSN-Onto
. 35

4.7 Illustration of an atomic event condition and an event statement modeling
 37

4.8 Illustration on event occurrences modeling . 38

4.9 Illustration on event occurrences modeling . 40

4.10 The AMI Smart Meeting Room Ontology
. 41

4.11 The alignment between the AMI Smart Meeting Room Ontology and the MSSN-Onto . . 42

4.12 The architecture of the HIT2GAP platform . 43

4.13 The alignment of MSSN-Onto with the HIT2GAP ontology 44

4.14 The architecture of our prototype . 46

4.15 Event Querying Performance Result . 50

4.16 Overhead size of MSSN-Onto from the simulation . 52

4.17 Query execution speed results
. 53

6.1 Illustration: Event Detection Algorithm . 74

6.2 The structure of an event processing pipeline
. 77

6.3 An example of a GST-CEMID processing pipeline
. 79

6.4 Impact of number of sensors on detection latency . 81

6.5 Impact of number of sensors on throughput
. 81

6.6 Impact of of sensor sampling frequency on detection latency
. 82

6.7 Impact of sensor sampling frequency on throughput . 82

6.8 Impact of number of operators on detection latency . 83

6.9 Impact of number of operators on throughput
. 84

7.1 L’architecture de framework CEMiD . 96

xv

xvi List of Figures

Introduction

Background

The vertiginous advances in low-cost hardware technology, wireless communications, and digital
elec-tronics have fostered the development of multifunctional (wireless) Multimedia Sensor Networks

(MSNs). Multimedia sensor networks are networks of interconnected devices that are able to
ubiquitously retrieve multimedia content, such as video and audio streams, images, and still scalar
sensor data from the envi-ronment [1, 2, 3]. Nowadays, multimedia sensor networks become
increasingly popular and important in our everyday life, for monitoring, tracking, and detecting
events in different scenarios (e.g., smart homes, smart buildings, smart cities) [4].

The popularity of sensor networks (also multimedia sensor networks) has led to the tremendous
amount of data that are produced from sensors each day. This leads to the challenge of how the data
from sensor networks should be maintained efficiently such that events can be detected among the
gathered data effectively. The existence of different and smart devices within the network makes this
challenge more difficult to overcome due to the diversity of sensor types, a large variety of sensor output
formats, and the difficulty in modeling multimedia data such that they can always be retrieved efficiently
when detecting an event. Yet, approaches for modeling sensor networks, modeling the gathered data,
and assisting users for modeling and detecting events are lagging behind.

Adopting multimedia sensor networks or hybrid sensor networks(i.e., a sensor network which
consists of both scalar and multimedia sensors) over using solely scalar sensors allows an application to
be able to detect more complex events that may not be possible to be detected without using multimedia
data. For example, a network of velocity sensors by the roadside allows only the detection of an
Excessive Driving Speed event. However, enriching the network with surveillance cameras
provides the possi-bility of detecting more complex events, such as Traffic Jam event or Car
Accident event. The analysis of surveillance camera footage and velocity sensors can also be used for
detecting the plate number of the car that drives faster than a speed limit.

Even though, multimedia sensor networks are extensively used nowadays, problems concerning the

difficulty in processing events still persists. The main reasons can be briefly elaborated as follows.

• The lack of a data model for modeling data gathered from multimedia sensor networks,
which can help to facilitate event modeling and detection;

• The lack of an approach for modeling and detecting events in multimedia sensor networks;

• The lack of an interface, a tool, or a language to support users in the modeling of

complex events that they are interested in.

In an ideal use-case of a multimedia sensor network application, users are needed to be able to model

sensor network infrastructure and events that they would like to detect on their own without relying on hard-

coding or reimplementation by developers. However, the lack of a suitable data model, a language

xvii

xviii Introduction

for modeling events, and an approach for processing complex events in multimedia sensor
networks forces developers to hard-code all the data models and the detection process. To
overcome this problem, a suitable data model for modeling multimedia sensor networks, a
language which helps users to model their own needs, and an approach for processing events
that are designated to multimedia sensor networks are needed to be proposed.

There exist several studies related to processing events in multimedia sensor networks that have focused

separately on sensor network modeling [5, 6], multimedia data modeling [7, 8], and complex event processing

languages [9, 10]. These studies can address only challenges and requirements which are related to their

respective field. However, to process events in multimedia sensor networks effectively, all the requirements for

modeling sensor network, modeling multimedia data, and processing complex events, are needed to be

addressed comprehensively. Hence, the fact that existing studies focus solely on overcoming challenges and

requirements in their respective field make them not to be able to address to fully overcome challenges and

requirements on processing events in multimedia sensor networks.
To the best of our knowledge, there is no existing study that can comprehensively address the afore-

mentioned challenges on processing events in multimedia sensor networks. Hence, to overcome the
limitations of existing approaches, in this work, we propose CEMiD, a full fledge ontological-based
framework to support Complex Events ModelIng and Detection in multimedia sensor networks, as well as
the modeling of the multimedia sensor networks itself. CEMiD mainly relies on three core components:
(i) an ontology-based data model, named MSSN-Onto, which allows the representation and modeling of
the knowledge related to multimedia sensor networks modeling and semantic interoperability; (ii) a
CEMiD language for defining and describing complex events in multimedia sensor networks; and (iii) a

complex event processing engine, which detects events according to predefined data models provided
by the MSSN-Onto and CEMiD language. CEMiD framework helps users design their MSN applications,
process all gathered sensor readings, and translate them into events, when detected according to
predefined models provided by users through the CEMiD language.

The ultimate aim of this dissertation is to provide an approach for processing complex
events in multimedia sensor networks. Our approach targets multimedia sensor networks
modeling and complex event processing through the following objectives:

• To propose a data model for modeling multimedia sensor networks and data gathered

from the networks which helps to facilitate complex event modeling and event detection;

• To propose an approach for modeling and detecting events in multimedia sensor
networks in such a way that users can freely model events that they would like to detect
without relying on developer’s hard-coding or re-implementation;

• To propose a full-fledged framework for detecting events which is capable to support different needs of

users in different application domains such that, developers can easily reuse the framework in different

wide range of applications while keeping the need of reimplementation to be minimal.

Contributions

Responding the proposed objectives, the main contributions of this study can be summarized as follows:

• Multimedia Semantic Sensor Network Ontology(MSSN-Onto), an ontology for modeling

multimedia sensor networks. This first contribution is the provision of a generic and
comprehensive ontology, MSSN-Onto, that aims at addressing the challenge concerning
the lack of a suitable data model for modeling multimedia sensor networks. It helps to
model multimedia sensor networks infrastructure and all the gathered data in such a way
that all the modeled data can be plugged to several application domains;

Publications xix

• CEMiD language, a language for modeling complex events in a multimedia sensor network.
This second contribution is related to addressing the challenge of allowing users to model
their own events without relying on developer’s hard-coding or reimplementation;

• CEMiD Framework, an engine to for processing complex events in multimedia sensor networks.

The third contribution is a full-fledged framework which is built on top of the MSSN-Onto and the
CEMiD language. The framework is able to process and detect complex events in multimedia
sensor networks in a near real-time manner. The basis of the framework is constructed by a newly
proposed pipelined-based multimedia event processing plugins so called the GST-CEMiD.

Publications

From the results of the contributions of this study, the following publications were produced
and support the material presented in this thesis:

• Chinnapong Angsuchotmetee and Richard Chbeir. Nov 2016. A survey on complex event
definition languages in multimedia sensor networks. In Proceedings of the 8th International
Conference on Management of Digital EcoSystems (MEDES). ACM, New York, NY, USA, 99-108.

• Chinnapong Angsuchotmetee, Richard Chbeir, Yudith Cardinale and Shohei Yokoyama.

Dec 2017. A dynamic event detection framework for multimedia sensor networks. In 23rd
Asia-Pacific Conference on Communications (APCC) (*Accepted on August 31, 2017,
To be appeared), Perth, Australia,

• Chinnapong Angsuchotmetee, Richard Chbeir, Yudith Cardinale and Shohei Yokoyama.

2017, A Pipelining-based Framework for Processing Events in Multimedia Sensor
Networks, ACM SAC 2018, (*Accepted on November 24, 2017, To be appeared)

• Chinnapong Angsuchotmetee, Richard Chbeir, Yudith Cardinale and Shohei Yokoyama.

2017, CEMID: A Semantic Based Framework For Complex Events Modeling and
Detection in Multimedia Sensor Networks. submitted to ICDE 2018. (* The notification
result is expected to be out by December 22, 2017)

• Chinnapong Angsuchotmetee, Richard Chbeir, and Yudith Cardinale, 2017, A Pipelining-based

Framework for Processing Events in Multimedia Sensor Networks, MSSN-Onto: An Ontology-
based Approach for Flexible Event Processing in Multimedia Sensor Networks. (* Minor revision is
submitted to Elsevier Future Generation Computer System Journal on October 13, 2017)

Structure of the Dissertation

The structure of the dissertation is given as follows:

• Chapter 1 introduces the concepts of multimedia sensor networks and event processing
in multime-dia sensor networks. Problems, challenges, and requirements on these areas
are identified and given in this section;

• Chapter 2 is dedicated to the literature review. Most relevant and recent studies related

to processing events in multimedia sensor networks are discussed, evaluated, and
compared with respect to the identified requirements for a generic approach for complex
event processing in multimedia sensor networks;

xx Introduction

• Chapter 3 introduces the overview architecture of the CEMiD framework. All the main
components of the framework are described briefly in this chapter. Each of the main
components is further described in detail later as a dedicated chapter;

• Chapter 4 describes the MSSN-Onto which is one of the main components of the CEMiD

framework. The MSSN-Onto is the core data model of the framework. All the sensor infrastructure
information, sensor readings, multimedia data, and events are modeled by using the MSSN-Onto;

• Chapter 5 describes the CEMiD language. The CEMiD language is one of the main components of

the CEMiD framework and also one of the main contributions of this dissertation. The CEMiD
language helps users to model all the data models which are necessary for processing events in
multimedia sensor networks without having to rely on hard-coding or using a low-level data
modeling language which can be difficult for users to use;

• Chapter 6 is dedicated to the details information on how the CEMiD framework can be developed.

All the algorithms that are used and the implementation details are described in this chapter. This
chapter ends with the experiments for validating the performance of the framework;

• Chapter 7 summarizes and concludes all the contributions of this dissertation. This

chapter ends with the list of future studies that can be done in the future.

Chapter 1

Multimedia Sensor Network and Complex

Event Processing: Preliminaries

This chapter presents a general description of multimedia sensor networks and complex event
processing technologies. The most important open research questions from both of these fields are
identified and described. At the end of this chapter, we discuss the common points and the needs of
applying complex event processing in multimedia sensor networks. For the clarity of the discussion and
illustration, we base the discussion in the context of a Smart Office, as motivating scenario.

1.1 Multimedia Sensor Networks

Multimedia Sensor Networks (MSNs) emerge from the improvement of sensor capabilities and the intro-duction of

several low-cost, high-performance embedded devices, such as BeagleBone
1
 or Raspberry Pi

2
. The

performance of these devices is powerful enough to encode and stream video or audio data, while their size is
considerably small. The overall differences between scalar sensors and multimedia sensors are mainly related
to the aspects of device size, power consumption, data type produced, and communication methods. Table 1.1
summarizes the major difference between scalar sensors and multimedia sensors.

Table 1.1 – Comparison between Scalar Sensors and Multimedia Sensors

 Scalar Sensors Multimedia Sensors

Device Size Small Medium

Power Consumption Low Medium

Data Type Produced Numeric, Text Video, Audio, Image, Numeric, Text

Communication
Infrared, Bluetooth, Ethernet, 802.1X,

Short range wireless

Methods Cellular (e.g., UMTS, LTE)

communication (e.g., Zigbee, RFID)

Sample Devices NodeMCU (ESP8266), Blynk Beaglebone, Raspberry Pi,

Arduino based MCU ARMv7, ARMv9

The comparision summarizes the information according to [11, 12, 13]. Regarding the device size, a scalar

sensor device is considerably smaller than a multimedia sensor. The difference in device reflects the difference

in power consumption rate. Scalar sensors can operate on battery for a considerably long period

1 http://beagleboard.org/bone

2
http://www.embeddedpi.com/

1

2 CHAPTER 1. Multimedia Sensor Network and Complex Event Processing: Preliminaries

(e.g., a month of operation time in a single battery charged). In addition, a multimedia sensor usually
contains more complicated circuit can produce complex data types. However, its power consumption
rate is considerably higher than a scalar sensor. Hence, a multimedia sensor is rarely operated solely on
battery. It is often required to be equipped with a reliable power source all the time. The methods for
transferring data between scalar sensors and multimedia sensors are also mostly different. The scalar

sensors use a low powered short range communication method, such as infrared, Bluetooth, RFID
3

 or

Zigbee
4

. Multimedia sensor devices mostly use an Internet Protocol (IP) based communication interface

such as Ethernet, Wireless 802.1X, or cellular based communication, such as UMTS
5

 or LTE
6

.

Nowadays, both scalar sensors and multimedia sensors are available commercially with an
inexpensive price. Multiple sensors are also often integrated into a single device, so-called a
smart device, which can sense and produce multiple types of data. Examples of smart devices
include smartphones and smart televisions. Applications which rely on a smart device includes
smart home surveillance, smart offices, telemedicine, and smart cities.

1.2 Complex Event Processing

In general, an event can be either an Atomic Event, or a Complex Event. Definitions of both
types of events can be found in the Event Processing Glossary report, provided by Real-Time
Intelligence and Complex Event Processing community [14]. They are given follows.

• Atomic Event: An atomic event (or a simple event) is an event that is not viewed as
summarizing, representing, or denoting a set of other events;

• Complex Event: A complex event is an event that summarizes, represents, or denotes a

set of other events.

According to the definitions provided by the glossary, it can be said that a complex event is an
abstraction of multiple events, while an atomic event is a smallest unit of a complex event. For example,
a Rainstorm event can be modeled as a complex event which consists of a Heavy rain event, and a Fast

wind speed event. The Heavy rain and Fast wind speed events are not an abstraction of other events.
Hence, they both are atomic events. With respect to the sensor network context, we can intepret the
definition of an atomic event as an event that can be detected by using a single reading from a sensor, while a
complex event definition can be interpret as an event that requires multiple sensor readings from one or

more sensors to detected

Complex Event Processing (CEP) is a field of study which focuses on analyzing a pattern
of data from multiple sources and detecting meaningful events from gathered data [15]. Figure
1.1 illustrates an engine for processing complex events.

In short, a complex event processing engine assumes that inputs of the engine are streams of
atomic events. The engine works by applying predefined event patterns (given as a parameter or
defined previously) by users over streams of atomic events. The result of the complex event
processing engine is the streams of (complex) events that match the predefined event patterns.

A complex event pattern of the complex event processing engine is constructed by modeling a complex

event as a spatiotemporal pattern of multiple atomic event [15]. For example, one hour meeting occurs at

3
Radio-frequency identification (RFID) is the use of a small device tag which can emit radio wave for sending data.

4 Zigbee is a commercial name of an IEEE 802.15.4-based communication method which helps low-powered sensor node to be able to use Internet

Protocol (IP) based network

5
Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system which allows

mobile devices to access data over IP.

6
Long-Term Evolution (LTE) is a fourth generation mobile cellular system which allows mobile devices to access

data over IP with higher speed than UMTS

1.3. Multimedia Sensor Networks and Complex Event Processing: Motivating Scenario 3

Predefined Complex

Event Patterns

Streams of

atomic events Detected

complex Events

Complex Event

Processing Engine

Figure 1.1 – Complex Event Processing (CEP) Engine

Room A, can be modeled as a pattern of: an atomic event people are in Room A is detected
simultaneously with multiple atomic events people are speaking, and they occur continuously for
one hour within Room A. Expressing such a pattern can be difficult for end users. Hence, a
common practice for most of the complex event processing engines is to propose a high-level
language for users to define their own desirable event patterns [16, 17, 18].

Since the last decade, complex event processing has received an extensive attention from both
academic and industrial communities. Lots of complex event processing engines and languages
have been proposed [15, 19]. Complex event processing is mainly adopted in business monitoring
and analysis field. However, the usage of a complex event processing engine in a sensor network
context, especially in multimedia sensor networks, has not been extensively addressed.

1.3 Multimedia Sensor Networks and Complex Event Processing:

Motivating Scenario

So far, we discussed the background of multimedia sensor networks and complex event
processing. In this section, we depict the need of applying complex event processing in a
smart office equipped with a multimedia sensor network.. The smart office is designed to
monitor, support, and facilitate activities of users within the office. To do so, different types of
sensors are installed within the office to gather data. Figure 1.2 shows a sample smart office
with four types of sensors installed: (i) video camera, (ii) computer (for sensing a list of
processes that are executed on each computer), (iii) light sensor, and (iv) temperature sensor.

Detecting solely atomic events may be sufficient in several use-cases. However, the need
to detect complex events is a must in various situations, especially when having a gap
between installed sensor network and events to be detected (quality of sensings, missing
data, etc.) and when having an evolving set of needs (since needs can evolve with time and
can be expressed by different people involved in an application domain).

Table 1.2 shows some complex events to be detected in order to cope with the needs of an employee
and a manager of that office. Events that are related to employees are mostly related to the condition of
their working room whether the light is too bright or too dark for their activities, or whether the room

4 CHAPTER 1. Multimedia Sensor Network and Complex Event Processing: Preliminaries

CT

P

CT

CT

P

Computer

Light Sensor Temperature Sensor

Video Camera CT

Figure 1.2 – Smart Office with Multimedia Sensors Installed

temperature is too hot to work comfortably. Managers are more concerned about surveying the office to
detect whether the situation is currently normal or an unexpected incident is occurring (e.g., someone
tries to hack an office system). As shown in Table 1.2, each event requires the combination of several
atomic readings with some video detection techniques (to detect if people are authorized stuff or not).
This clearly shows a simple multimedia sensor network scenario where data gathered from multimedia
and scalar sensors are needed to be combined so to detect an event.

In order to be able to cope with complex event modeling and detection, challenges in both
hardware aspect and event processing aspect are needed to be addressed properly. The
challenges that are related to hardware aspect are given as follows:

• Communication Method Optimization: Sensor devices are mostly working on a wireless
commu-nication medium. Hence, it is susceptible to the delay, loss, and error when
coping with multimedia data [11]. This challenge is related to how to optimize the
communication method to reduce the communication latency, loss, and errors;

• Power Consumption Optimization: Encoding and decoding multimedia data consume a

consid-erable amount of processing power. This affects directly the power consumption
rate [11]. This challenge is related to a suitable method for multimedia sensors to encode
and decode multimedia data under an energy constraint environment.

In short, it is needed to be ensured that multimedia sensors within the network can effectively

transfer all the gathered data effectively, while communication error and power consumption rate
are kept minimal. Overcoming these challenges means that event processing engine will always
have a credible data (i.e., data which contains minimal latency and error) for processing events.

1.3. Multimedia Sensor Networks and Complex Event Processing: Motivating Scenario 5

Table 1.2 – Complex events and their atomic events in smart energy management and smart
office surveillance applications

Complex Event Name Atomic Event(s) Used Constraint

 Video Camera Computer Light Sensor Temperature

- User Role: Employee

Excessive A known person
Working Too bright - -

Working Light is detected

Excessive A known person

Videoconferencing Videoconferencing Too bright -

is detected

Light

Overpowered A known person - - Too high
During

Heater is detected office hour

- User Role: Manager

Hacking
An unknown face Working - - Outside

is detected working hour

Normal Situation More than one person are detected Working - - During

office hour

Regarding the event processing aspect, there two main components that are required for developing
an effective complex event processing engine for multimedia sensor networks. First, a language is
needed to allow users to define events to be detected. Such a language needs to provide features for:(i)
modeling multimedia sensor networks infrastructure (e.g., defining a list of sensors, capabilities of each
sensor, their installation locations), (ii) modeling atomic events, and (iii) modeling complex events.
Second, a processing engine which helps users handle the raw input stream, decode the data, and
translating them into an event is also required. Such an engine is needed to be able to detect events in
at least a near real-time manner as some events can lose their significance when detected a bit late. We
summarize explicitly all the requirements regarding the event processing aspect as follows.

• MSNs Modeling: In order to provide a satisfactory event definition, multimedia sensor networks
modeling needs to be considered. It needs to be generic (can be applied to various applications)
and able to include: (i) the list of related sensors, (ii) their locations (e.g., installation location,
coverage area), and (iii) their capacities (e.g., hardware specification, output format, accuracy);

• Multimedia Sensor Data Modeling: An atomic event is always related to a sensor

reading. Hence, the ease and the effectiveness of defining an atomic event rely on how
sensor data is indexed. The existence of multimedia sensor readings in multimedia
sensor networks needs to rely on appropriate and rich multimedia data design and
index, in order to cope with atomic and complex events definition process later on;

• Event Modeling: Users need to model both atomic and complex events on their own. Hence, a

high-expressive language with a set of dedicated operators for constructing a complex event
pattern is needed in order to support at least both event spatial and temporal facets.

• Near Real-time Event Detection: Events that are time-sensitive (i.e., an event that loses

its significance if it is detected too late) must be detected and reported in a near real-
time manner, such as Hacking or Overpowered Heater. Thus, the system needs to
react to the occurrence of these events on time;

• Event Detection from Historical Data: Some events are not required to be detected in a

near real-time manner. In this case, the system needs to store and report them later in
response to the historical data query from users.

6 CHAPTER 1. Multimedia Sensor Network and Complex Event Processing: Preliminaries

• Application Domain Interoperability: All the data model, event model, and event detection
method are needed to be able to accommodate the change in an application domain. Ideally,
users must be able to define, modify, extend, or change an application domain on their own.

In this dissertation, we choose to focus on the challenges on the event processing aspect. This
means that the main objective of this dissertation is to propose a complex event processing engine
which is designated to multimedia sensor networks. The challenges regarding sensor communication
method optimization and power consumption optimization are out of the scope of this dissertation.

To the best of our knowledge, none of the existing studies can fully address the requirements in
the event processing aspects as given in this section. A new approach that can handle them is a
must. Next chapter surveys related studies before introducing our proposal.

Chapter 2

Related Studies on Complex
Event Processing in
Multimedia Sensor Networks

Existing studies that are related to complex event processing in multimedia sensor networks can be
categorized into three main topics: (i) sensor network modeling; (ii) multimedia data modeling and
retrieval; and (iii) complex event processing engine. We select significant studies in these three
main topics to discuss in this chapter. This chapter begins with a section dedicated to related
studies on sensor network modeling. Another section follows to it describe related studies on
multimedia data modeling and retrieval. The section after is dedicated to describing related studies
on complex event processing engine. This chapter ends with a comparative analysis of every
selected study against requirements as identified in the previous chapter.

2.1 Sensor Network Modeling

The approaches for modeling sensor networks can be categorized into three groups: (i) relation database

approach, (ii) graph database approach, and (iii) ontology-based approach. They are described as follows.

2.1.1 Relational Database Approach

The studies belonging to this approach choose to model sensor networks using relational
databases. Sensor network infrastructure and data produced from the network are modeled
and stored as relation tuples in a relational database with a predefined schema. Significant
studies which adopt this approach include [20, 21, 22]. Their details are described as follows.

2.1.1.1 Fjording the stream: an architecture for queries over streaming sensor data [20]

This study was proposed in 2002. It is one of the earliest approaches that aimed at proposing a middleware for

modeling a sensor network using a relational database. This study proposes a framework named Fjording

designated to use as a middleware for modeling a sensor network infrastructure, and helps developers to

gather data collected from a sensor network. The framework relies on a lightweight relational

7

8 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

database system, so-called TinyDB, as its backend. The benefit of adopting TinyDB lies in the
fact that it consumes low computation resources. Hence, this allows the Fjording framework to
be deployed in a resource-constrained environment, while it can still provide users or
developers a capability to query sensor data using a conventional SQL expression.

The main limitation of the Fjording framework is the hard-coding schema nature of the framework.
This restricts the framework to hardly interoperate with another system which does not use the Fjording
framework. The design of the framework also does not take a multimedia sensor network into account.
Hence, its capability for supporting multimedia sensor networks is also limited.

2.1.1.2 IrisNet: an architecture for a worldwide sensor web [21]

This study was proposed in 2003. The IrisNET is a framework which allows developers to connect multiple

sensors to form a sensor network over the Internet. Hence, this makes possible for IrisNET developers to

create a worldwide level sensor network. The backend of modeling sensor network infrastructure and the

gathered data is a relational database. Each application which adopts the IrisNET needs to propose a

database schema on their own for modeling sensor network infrastructure and gathered data.

The IrisNet is one of the earliest middlewares of a sensor network application which is
capable to support a worldwide level architecture. The limitation of the IrisNet is related to fact
that each of an application connected to the IrisNet needs to propose a schema for modeling a
sensor network on its own. Hence, each IrisNET application may not be able to interoperate
with each other if they use different database schemas.

2.1.1.3 A distributed cloud-based cyberinfrastructure framework for integrated bridge monitor-
ing [22]

This study has been recently proposed in 2017. The aim of this study is to propose a cloud-based
infrastructure framework for monitoring sensors which are installed for monitoring bridges in a road

surveillance system. The system relies on a distributed database system so-called Cassandra
1

 of Apache

Foundation. The data model of this study is hard-coded into five relational tables which are Sensor,
SensorData, ImageData, Geometry, and FELine. Sensor and SensorData tables are used for modeling
sensors and produced data. ImageData table is used for storing images recorded from sensors.
Geometry and FELine are tables which contains data specific to bridge monitoring application.

The significant point of this study is that it is one of the most recent studies which adopts
distributed relational database to propose a framework for modeling multimedia sensor
network (in this case, a bridge monitoring sensor network). However, this study focuses solely
on bridge monitoring application. Hence, it cannot be used for modeling different types of
sensors, and events from gathered data. It also cannot be interoperated with other application
as the database schema of this study is fixed to a bridge monitoring application.

2.1.2 Graph Database Approach

Graph database refers to a database which chooses to model and store data as a graph. This
means that all data within a graph database is modeled as a set of interconnected nodes in
which a node in a graph represents a data, while an edge represents a relation between a pair
of nodes. Significant studies which adopt graph database approach for modeling data in
sensor networks include [23, 24, 25]. Their details are given as follows.

1 http://cassandra.apache.org/

2.1. Sensor Network Modeling 9

2.1.2.1 The G* graph database: efficiently managing large distributed dynamic graphs [23]

This study was proposed in 2014. It proposes an architecture of a graph database system for
managing large distributed data collected from sensor networks and social networks. The
system is named G*. G* models data as a nested graph in which a graph is modeled as a
collection of vertices and edges. Each vertex can be either a data node or a sub-graph. The
main contributions of G* are mainly on the data model, system architecture for indexing and
handling large distributed graphs, and a language for querying data from stored graphs.

The main advantage of G* lies in the scalability of the system on managing series of large graphs
and the performance on querying for data. G* also offers a language for users to query for data from the
graph. However, the design of G* is neither designated for multimedia data modeling nor sensor data
modeling. Its design is also not designated for complex event modeling and retrieving. This limits the
capabilities of G* on supporting complex event processing for multimedia sensor networks.

2.1.2.2 Integration of Geo-Sensor Feeds and Event Consumer Services for Real-Time
Representa-tion of Iot Nodes [24]

This study was proposed in 2016. The main objective of this study is to propose an architecture for

integrating a large amount of data provided from Geo-Sensor
2

 feeds. This study chooses to adopt a well-

known graph database implementation so-called Neo4J
3

 for modeling all the data. Th main contribution of
this study is a web-based RESTFul service architecture for retrieving a geo-sensor feeds (modeled

according to the GeoJSON
4

 standard), re-modeled as a graph and stored into Neo4J repository.
The advantage of this study lies in the usage of Neo4J technology. It allows the study to adopt the Neo4J

proprietary language to query for data directly without the need of proposing any new language. The limitation

of the study lies in the fact that it is limited to modeling data coded according to GeoJSON standard only.

Hence, it cannot be used in the case which sensors within the network are heterogeneous.

2.1.2.3 Big Data Model Simulation on a Graph Database for Surveillance in Wireless
Multimedia Sensor Networks [25]

This study was proposed in 2017. This study proposes a data model for modeling multimedia gathered
from wireless multimedia sensor networks (WMSNs). The This study proposes three levels data model
for modeling multimedia sensor networks. The first level of the data model is used for modeling a linked
graph between sensors and the data that they produced. The second level is used for modeling a
gateway (i.e., a base station for collecting sensor data and interpreting semantic information) as a linked
graph between a gateway and sensors. The final level is used for modeling a graph of interconnected
gateways. The data model proposed in this study was tested by means of experiments. Several graph
databases implementations and relation database implementations are adopted to compare the
performance of the data model under the different implementations. Tested graph database backends

used are OrientDB
5

 and Neo4J. Tested relational database backend used is MySQL.

The main advantage of this study lies in the fact that the data model is modeled designated
for handling data within wireless multimedia sensor networks. However, this study has not yet
focused on modeling complex events in multimedia sensor networks. Hence, querying for data
or events currently rely solely on the language provided by the backend (e.g, Neo4J language
for Neo4J case, or SQL language for MySQL case).

2 Geo-Sensor refers to a sensor which provides spatial information (e.g., GPS co-ordinate, a geometry of a covered spatial area) as an observation result

3
https://neo4j.com/

4
http://geojson.org/

5
https://www.orientdb.com

10 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

2.1.3 Ontology-based Approach

The limitations of the relational database approaches for modeling a sensor network is related to mostly
its fix database schema nature. Hence, it cannot be used for combining data from heterogeneous
sources (i.e., integrating data from sensor networks with different infrastructures). To overcome this
limitation, several ontologies for modeling sensor networks have been proposed and used in several
domains such as smart cities [26], smart buildings [27], microgrids [28]. Some ontologies in previous
studies are also proposed to be used as an abstraction layer that can model any sensor network
regardless of the technologies used [1, 6, 29, 30]. Several studies propose generic ontologies for sensor
networks such as OntoSensor [6] and SensorML [1], or domain-specific ontologies such as Marine Meta
Data Interoperability (MMI) for an oceanic sensor network [30].

In 2011, the World Wide Web Consortium (W3C), introduced the Semantic Sensor Network (SSN)
ontology [29] as an attempt to propose a generic ontology for a sensor network. All existing
ontologies for modeling sensor networks have been reviewed and analyzed toward proposing the
SSN ontology. Hence, we choose to discuss only the SSN ontology in detail in this sub-section as all
the features for modeling sensor networks of other major ontologies are already reviewed,
analyzed, and integrated into the SSN ontology. The detail of the SSN ontology is given as follows.

2.1.3.1 Semantic Sensor Network (SSN) Ontology [29] Main

concepts of the SSN ontology are depicted in Figure 2.1.

Figure 2.1 – Semantic Sensor Network SSN Ontology

Briefly, the SSN ontology models a sensor as an entity which produces an observation
according to a feature of interest. For example, a temperature sensor can be modeled as a
sensor which has Temperature as its FeatureOfInterest, and has a numerical value
as its Result. It is noted that not every concept of the SSN ontology is given in Figure 2.1 for
the brevity of the discussion. The latest version of the ontology is published on 7th September

2017. The detail of the ontology can be found online
6
. More details about SSN ontology and its

usage will be provided the later chapter as the SSN ontology is a part of our approach.

The SSN ontology has been adopted by researchers and industrialists in several major projects such as

SENSEI [31] and SmartProducts
7
. The SSN ontology is generic and complete when it comes to a scalar sensor

network. There are several domain-specific ontologies that are developed by extending the SSN
6

http://www.w3.org/TR/vocab-ssn/
7 http://www.smartproducts-project.eu

2.2. Multimedia Data Modeling and Retrieval 11

ontology to take the advantage of its completeness for modeling sensor networks such as [32] and [33].

However, they do not consider any multimedia sensor aspect and thus remain limited in that context.

Briefly, the SOSA/SSN ontology, the observation perspective, describes a sensor network
through seven main modules which cover different aspects of a sensor network. Sensor
descriptions and capabilities are defined using the following modules:

• Observation/Actuation/Sampling module: contains the fundamental concepts for
model-ing a sensor network, which are Sensor, Stimulus, Observation,
ObservableProperty, and FeatureofInterest. In short, a sensor is modeled using
the Sensor concept. A Sensor observes a FeatureOfInterest from a Stimulus
and produces a result as an Observation. A possible kind of value or feature that a
sensor can observe is modeled us-ing ObservableProperty; This module also
contains concepts that are related to Actuator and Sampling perspectives. However, they
are given in Figure 4.1 as they are not related to the Observation perspective;

• Feature module: helps to model all properties and features that are used within a sensor network;

• System module: is used for modeling a sensor network as a system which is composed of

multiple sensors. A system can also be divided into multiple sub-systems by using an object
property hasSubSystem. A system or a sub-system itself can also be a sensor;

• Procedure module: helps to model a sensing method of a sensor. Such a method has

an input information described by the Input concept, and has an output information
describes by the Output concept.

The operating restriction of a sensor network is described by:

• SystemProperty module: is used for modeling properties and operating constraints of each sensor

within a sensor network and also the network itself. In short, the capabilities of a sensor (e.g., accuracy,

precision) are modeled by using the SystemProperty concept. Survival constraints and operating

constraints are modeled by using SurvivalRange and OperatingRange concepts;

• Condition module: is used for modeling a sensing constraint of a sensor as a constraint
block. For example, a wind speed sensor can be attached to a constraint block to indicate
that it can only capture the data when the wind speed is between 10-60m/s.

The deployment related information is described by the following modules:

• Deployment module: in the case where the sensor is a device, it is expected to be
deployed at some specific location. This module is used for describing such information
and related process, or constraint on deploying a given sensor device.

Finally, the observation result is described by using the Result module, which contains
only a single concept, the Result. It is used for modeling a value of the Observation. The
format of the value is coded according to the FeatureOfInterest. When the result is a
simple value, (e.g., a single numerical data or a short text), the value can be attached directly
to the Observation concept directly without using the Result concept too.

2.2 Multimedia Data Modeling and Retrieval

The method for modeling and retrieving multimedia data semantically (i.e., modeling multimedia data by means

of its content meaning) has been the subject of interest since the appearance of digital multimedia

12 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

objects and multimedia encoding techniques (e.g., WAV, MP3, MP4, AVI). The main objective of these
studies is to be able to model multimedia data in such a way that users can search for their desirable
multimedia content semantically (e.g., searching for an image of a red car out of an image corpus). The
common method that studies in this group used is to model the multimedia data by means of its low-level
features. Major studies in this field can be categorized into two groups according to their choice of data
model which are (i) Relation Database Oriented Multimedia Data Modeling and Retrieval, (ii) Linked
Data-Oriented Multimedia Data Modeling and Retrieval and (iii) Ontology-Based Multimedia Data
Modeling and Retrieval. The details are given in dedicated sub-sections as follows.

2.2.1 Relation Database Oriented Multimedia Data Modeling and Retrieval

Studies in this group choose to use a traditional relational database for modeling multimedia data.
Low-level features are extracted, modeled and stored in a table within a relational database. The
multimedia retrieval is done by mapping important keywords and low-level features within a
database. For example, a red car keyword can be mapped to an image which contains an object
with a specific kind of contour and the color descriptor of the content within the contour contains
mostly red color. The studies in this group propose languages for users to model the mapping
process as described. The languages can be categorized into two groups (i) predicate style and (ii)
SQL Style Language. Major languages are the CVQL [34] and [35] detailed as follows.

2.2.1.1 CVQL [34]

CVQL is developed in a content-based video retrieval over video database. The syntax is given as follows.

{range; predicate; target}

The range is used for specifying the search space within a multimedia database. The
predicate is a function for evaluating multimedia content that is stored within the range.
The target is used for defining the target multimedia type that the user wants to retrieve. The
multimedia type can be videos, shots or frames. The example statement is as follows.

{ smart_office_db;

AP(unknown_face) [face_features !=
<known_face_features>]; frames }

The CVQL predicate above is used for retrieving an unknown face within a smart home
multimedia database. The predicate part is defined using the AP function which is a built-in
function of the CVQL. This function is used for retrieving an absolute spatial position of a given
subject. In this case, the statement tries to search for an absolute position of an unknown face.
The evaluation criteria of an unknown face are to determine whether a set of facial features
matches with any face within a database of the known faces or not.

The CVQL syntax is simple and intuitive. Hence, users can use the language to model and
retrieve multimedia data easily. It also offers several built-in multimedia feature comparison
functions for users to use for working with multimedia features of video data.

The main limitation of the CVQL is that it is binded to a video retrieval application. Thus, it is
questionable whether can it be extended to support audio or image retrieval. The lack of complex
event operators also limits this language to be able to define events that involve video data.

2.2. Multimedia Data Modeling and Retrieval 13

2.2.1.2 SVQL [35]

Similar to CVQL, SVQL is also developed in a context of video retrieval application. SVQL uses SQL style

syntax to retrieve concerned contents within a video. SVQL extends SQL by proposing both content-based and

spatiotemporal filter operators into SQL language. These operators are (i) feature specification operators, (ii)

structure specification operators, and (iii) spatiotemporal specification operators. They are not given here in

detail for the brevity of the discussion. The sample statement is given as follows.

SELECT m.video FROM MOVIE m

WHERE face1:OBJECT WITH m.video

AND (face1 IS "FACE")

AND (NOT(TEXTURE(face1, "knownface.bmp") > 0.75))

--a <feature-specification>

The SVQL statement above is used for querying for a video file which contains a known face. The
variable m is defined as a type MOVIE. The m.video is a video event within a movie that is returned
from the query. The face1:OBJECT WITH m.video means that we define a variable face1 as an
object that is a part of a concern video event. The constraint (face1 is "FACE") is used for filtering
only a face object out of all other objects within a video. The two final line is a feature called Feature
Specification of SVQL. It filters for a frame within a video that has low-level features that are
matched with a given constraint. In this case, the statement tries to filter only for a face that its texture
match (75% similarity) with a known face that as given in knownface.bmp.

SVQL offers a language style that is similar to the SQL. Thus, users with SQL knowledge can
learn SVQL with a short learning curve. Operators in SVQL are also fairly complete for both
spatiotemporal and content-based video retrieval. Similar to CVQL, however, SVQL is also limited
to video retrieval. Thus, it is questionable whether can it be used with audio or image data.

2.2.2 Linked Data-Oriented Multimedia Data Modeling and Retrieval

A linked data, similar to a graph database approach, refers to a method of modeling data as
interlinked nodes in which each node describes data and edges between each node describes a
relation between nodes. To date, a study which proposes a language for retrieving multimedia data
in a linked data scenario which is SPARQL-MM [36]. The detail is given as follows.

2.2.2.1 SPARQL-MM [36]

SPARQL-MM is a language for retrieving multimedia data in a linked multimedia data scenario. SPARQL-
MM assumes that multimedia data is modeled by using Resource Description Framework

(RDF)
8
. In RDF, a data is modeled as a triple modeled as <s,p, o> which s and o are used

for modeling resources or data, while p is used for modeling a relation between s and o.
The author of SPARQL-MM assumes that all the multimedia are modeled by decomposing multimedia

data into smaller segments in which each segment is annotated with low-level features. To

retrieve multimedia data, SPARQL-MM extends SPARQL language
9
 and proposes

spatiotemporal operators. he extension covers video and image. However, audio operators are
not proposed. The example of SPARQL-MM statement is given as follows.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX mm: <http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#>

8
https://www.w3.org/RDF/

9 SPARQL is a language for querying data from RDF triplestore.

14 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

SELECT ?t1 ?t2 WHERE {

?f1 rdfs:label ?t1.

?f2 rdfs:label ?t2.

FILTER mm:rightBeside(?f1,?f2)

FILTER mm:temporalOverlaps (?f1, ?f2)

} ORDER BY ?t1 ?t2

As seen in the example statement, the syntax of the SPARQL-MM is exactly with SPARQL.
The extension which is proposed by SPARQL-MM is a set of functions proposed within mm:
prefixed names-pace. The example statement uses two functions: rightBeside and
temporalOverlaps. The rightBeside is a spatial function for filtering that two media segments are
needed to be located right beside each other. The temporalOverlaps is used for filtering that
time duration of two media segments are needed to be overlapped with each other. This
means that the example segment as given above queries for two multimedia segments which
located spatially right beside each other and happens during the same temporal period.

The current version of SPARQL-MM does not contain audio related operators. The lack of
both complex event processing operators and the content-based retrieval aspect represent
also some weakness to be considered.

2.2.3 Ontology Based Multimedia Data Modeling and Retrieval

Another important issue in multimedia sensor networks is the capability of understanding
multimedia content in a machine interpretable manner. To achieve that, ontology is usually a
preferable method that several previous works adopted. Adopting an ontology usually
assumes that the SPARQL language is used for retrieving multimedia data in these studies.
The ontology that is used in these studies are either specific to an application domain [37, 38]
or generic to an application domain [39, 7, 40, 8, 41]. The application domain specific
ontologies are not discussed in this section as we deemed them to be too limited to contribute
to the development of a generic complex event processing for multimedia sensor networks.

The studies that propose a generic ontology for modeling multimedia data developed their ontologies
by using the MPEG7 Standard [42]. The MPEG-7 is an XML-based multimedia content description
interface that provides a set of low-level multimedia features (e.g., track length, frame rate, color, texture)
that are classified under visual descriptors, audio descriptors, and descriptions schemes. The
introduction of MPEG-7 helps to standardize the method for indexing and representing multimedia data.
It also helps to separate the multimedia data representation model from a specific application domain.
Hence, the interoperability (syntactic and semantic) issue among multimedia data can be overcome by
adopting the same standard for indexing multimedia data. However, the weakness of the MPEG-7
standard lies in the fact that the MPEG-7 is an XML-based standard. It is not compatible to interoperate
with other application domains that are modeled within the semantic web by using an ontology. To
overcome this issue, several studies try to propose an MPEG-7 based ontology to make it possible to
model and interoperate with the semantic. Main MPEG-7 ontologies are described as follows.

2.2.3.1 Hunter’s MPEG-7 Ontology [39]

Hunter’s MPEG-7 Ontology was proposed in 2001 [39]. Hunter proposes the ontology by manually
translate the MPEG-7 standard into an ontology by using RDF. The latest version of Hunter’s ontology is
written in OWL. Hunter’s MPEG-7 ontology is covered up with visual descriptors of MPEG7, while audio
descriptors are not yet covered. Hunter’s MPEG7 ontology was used in several digital libraries projects.

2.3. Complex Event Processing Engine 15

2.2.3.2 DS-MIRF Ontology [7]

DS-MIRF, also known as Tsinaraki’s MPEG-7 Ontology, was proposed in 2004 by Tsinaraki
[7]. The DS-MIRF ontology is written in OWL. This ontology covers MPEG-7 standard video
and audio descriptors of MPEG-7 only partially. The usability of the DS-MIRF is demonstrated
in a soccer match video database and Formula-1 video database retrieval applications. The
DS-MIRF is used practically in several digital libraries and e-learning projects.

2.2.3.3 Rhizomik Ontology [40]

Rhizomik Ontology was proposed in 2005 by the company named Rhizomik Technologies
[40]. Rhizomik uses an automatic XML to RDF conversion for translating MPEG-7 schema
into RDF format. Rhizomik ontology is available in OWL. It fully covers all MPEG-7
descriptors. Rhizomik ontology was used in digital right management project and several e-
business projects that are developed by Rhizomik Technologies Company.

2.2.3.4 Core Ontology for MultiMedia (COMM) [8]

COMM is an MPEG7 ontology proposed by Arndt in 2007 [8]. The ontology was developed by
manually re-engineered MPEG7 schema into ontology in OWL. It covers MPEG7 up to visual
descriptor, while audio descriptors are only partially supported. COMM is used in several
multimedia analysis and multimedia annotation projects.

2.2.3.5 Ontology for Media Resource Annotation (MA-ONT) [41]

MA-ONT is an ontology propose by W3C as an attempt to generalize a data model for annotating
multimedia content [41]. Unlike other MPEG7 ontology, MA-ONT chooses to support only the
meta-data information of MPEG7. No audio or visual descriptor is supported. Instead, this ontology
is designed to work with metadata of multimedia instead such as EXIF, Dublin Core, ID3, etc.

2.3 Complex Event Processing Engine

The significance of the Complex Event Processing (CEP) Engine on processing complex
events in a multimedia sensor network is mentioned in the previous chapter. Previous studies
in this field are mostly focused on a stream database context. Studies in this field are widely
adopted in business activity monitoring and market data analysis application [15, 19]. Most of
these studies propose a language for users to model events. The CEP engine takes the
predefined event model provided by users and detect events accordingly.

The main components of a CEP language are (i) event operators and (ii) language syntax.
The syntax of CEP languages in previous studies may be different. However, most of them
share the similar set of complex event operators. The sub-section as follows describe the
common set of operators that are shared in most of CEP languages. This sub-section follows
by another dedicated sub-sections for describing the syntax and styles of CEP languages.

2.3.1 Complex Event Operators

In the context of a multimedia sensor network, operators that are necessary for modeling a complex event

must support both spatial relation modeling and temporal relation modeling. However, due to the fact that

previous studies are not developed under this context, the operators that they propose are solely related to

temporal relation modeling only because the spatial relation is not considered as a crucial information

16 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

to model in a stream database or a business activity monitoring context. The choice of temporal event
operators that are often adopted in previous studies are taken from the Allen’s Temporal Algebra [43].
The Allen’s Temporal Algebra proposes a set of operators for describing temporal relations between
events. The list of operators that are proposed by Allen’s Temporal Algebra is depicted in Figure 2.2.

 precedes preceded by

 a a

 b b

 meets met by

 a a

 b b

 overlaps overlapped by

 a a

 b b

contain

s during

 a a

 b b

 finishes finished by

 a a

 b b

 starts started by

 a a

 b b

equals

a
b

Figure 2.2 – Temporal Operators according to Allen’s Temporal Algebra

The Allen’s Temporal Algebra proposes thirteen temporal operators which consists of six pairs of
direct/inverse operators (e.g., a precedes b and a preceded by b) and one equals operator. All of these
operators can be effectively used for describing a relation between a pair of events in a historical data
querying case (i.e., a case which every event is assumed to be terminated before detecting event
relations). However, in a near real-time case, not every operator within the Allen’s Temporal Algebra can
be used due to the fact that some operator requires that an event is needed to be terminated first before
such a relation can be detected. For example, it is not possible to detect that a contains b or a finishes b
unless both events are properly terminated. However, it is possible to detect a precedes b without waiting
for the event b to be terminated. For this reason, it can be seen that operators finishes, finished by,
contains, during and equals cannot be used in a near real-time event detection case while, precedes,
preceded by, meets, met by, overlaps and overlapped by can be used in a real real-time event detection case.

Some CEP language in previous studies chooses to adopt all the operators from the
Allen’s Interval Algebra, while some of them choose to adopt only some operators. The choice
of operator name in some study is also different. The variation between each CEP language
comes from the difference in the choice of language styles and usage context. The details of
the different language styles of CEP languages are given in the next sub-sections.

2.3.2 Syntaxes and Styles of CEP languages

According to [19], The CEP language styles can be categorized into 3 categories. They are: (i)
Event-Condition-Action(ECA) based language, (ii) SQL/SPARQL based Languages, and (iii)
Logic Languages. The details of each language style are given as follows.

2.3.2.1 Event-Condition-Action (ECA) based CEP language

This group of languages chooses to follow the Event-Condition-Action (ECA) approach for designing their

language. In short, ECA style languages allow users to define an event name, an event pattern (as a set of

2.3. Complex Event Processing Engine 17

conditions) and how to act when such an event is detected. Languages in this group are
commonly used in an active database system. In this section, we choose to emphasis on
three selected languages which are Snoop[44], CeDR[45] and SaSE. [46]. Snoop is one of the
earliest languages in this group that has been developed. CeDR and SaSE are selected from
their popularity as they have been cited often. Their details are as follows.

Snoop: An expressive event specification language for active databases[44]

Snoop was developed to use for detecting complex events within an active database.
Snoop language syntax is given as follows:

On (<Event name>)

Condition <Filtering Constraint>

Action <Action name>

Snoop syntax consists of 3 parts. The On part is used for defining an event structure. The
Condition part is used for defining a filtering constraint. The Action is used for indicating
an action required when an event is detected. Snoop proposes temporal operators and
periodic operators. Snoop does not adopt every temporal operator of Allen’s temporal algebra.
Only operators for expressing sequence (e.g., precedes/preceded by, overlaps/overlapped by)
are adopted. Snoop provides a language with a simple and intuitive syntax.

Complex Event Detection and Response (CeDR) Language [45]

CeDR was developed under a context of a business event monitoring system. However,
this language is also generic enough to be used in other application domain. The basic syntax
of the CeDR is given as follows:

EVENT <Event Name>

EVENT_PATTERN <Event Pattern>

WHERE <Filtering constraint>

The EVENT part is used for defining the name of an event. An event structure is given in the
EVENT_PATTERN part. The WHERE part is used for specifying filtering constraints. CeDR has all basic
composition operators for defining event pattern. Beside these operators, CeDR also proposes an event
lifetime operator and a detection window operator for adding temporal constraints.

SaSE [46]

SaSE was developed under the context of complex event processing over sensor data
streams. SaSE was also demonstrated in a stock management application by using RFID
tracker. The basic syntax of SASE is as follows:

EVENT <Event Pattern>

WHERE <Filtering Constraints>

WITHIN <Time Sliding Window>

RETURN <Output data>

The event structure is defined in the "EVENT" part. The "WHERE" part is used for defining a
constraint. The "WITHIN" is used for specifying a time sliding window size (e.g., an event must happen
within 5 minutes window time). The "RETURN" part is used for specifying which data field to show as an
output. SaSE is recognized from its usage simplicity and the proof of a successful practical usage.

18 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

2.3.2.2 SQL/SPARQL Based Languages

This group of languages is developed to use with a continuous data stream management system.
Such a system uses either a relational database management system or a linked data management
system (i.e., RDF, OWL triplestore). CEP languages in this category are developed by extending
either SQL or SPARQL. SQL is used in the case that a system is based on a relational database.
SPARQL is used in a linked data case. Languages in this categories that are extended from the
SQL include (CQL)[47], StreamSQL[48], and PIPES[49]. Languages that are extended from the
SPARQL include C-SPARQL[50], SPARQL-ST[51], and SPARQLstream [52].

In this subsection, we choose to emphasize on two papers, the ESPER [17], and the EP-
SPARQL [53]. The ESPER is selected as it is currently the most popular tool for CEP and it
offers a SQL style language for defining events. The EP-SPARQL is selected as it is the most
recent SPARQL based language that is designated for processing complex events.

ESPER[17]

ESPER is developed as an engine for detecting complex events in a relation stream database.
ESPER is majorly used in business monitoring application. However, it is generic enough to use in wide
range of application. A language that is proposed in ESPER is called ESPER Event Processing
Language(ESPER EPL). The ESPER EPL adopts a syntax style from the SQL. Hence, it contains all the
conventional SQL operators (e.g. SELECT, INSERT, UPDATE, CREATE or DELETE). The full syntax is

not given in detail here for the sake of brevity. However, it can be found online in the official website
10

.

ESPER engine and ESPER EPL are expressive as they contain all necessary event
operators. The learning curve for ESPER-EPL can be quite fast if users are already known the
SQL as the syntax of both of them are similar. However, even though the learning curve of
ESPER EPL can be short for users that are already known the SQL, writing complex events
definition in this language can be difficult as it has to be written as a nested query.

EP-SPARQL[53]

EP-SPARQL is developed to address the lack of a language for processing events in a linked data
stream context.To the best of our knowledge, it is currently the most recent SPARQL style language that
is designated for complex event processing in linked data streams. EP-SPARQL syntax is similar to
SPARQL. EP-SPARQL addresses the issue of the lack of event structure operators in previous papers
such as C-SPARQL[50] or SPARQL-ST[51]. The operators that are newly proposed in EP-SPARQL are
"SEQ", "OPTIONALSEQ", "EQUALS" and "OPTIONALEQUALS". SEQ is a sequence operator.
OPTION-ALSEQ is a temporal sensitive version of SEQ. EQUALS is a composition operator.
OPTIONALEQUALS is a temporal sensitive version of EQUALS.

EP-SPARQL is addressed the necessity of temporal operators for constructing complex events
in SPARQL. Users that are familiar with SPARQL language can also learn EP-SPARQL fast as the
syntax of both of them are similar. However, defining complex events in EP-SPARQL can be
complicated due to the difficulty that a nested query is also required to do so.

2.3.3 Logic Languages

Logic languages are a group of languages that choose to define events as a logic style formula (i.e.
First order logic). Languages in this categories include Prova[54], RuleML[55], and XChangeEQ[9].
XChangeEQ is one of few languages that is inspired by an event calculus. Thus, it has a strong
semantic foundation. ETALIS [10] is one of the most recent work and it is proved to be working well
by under its demonstration example. Their details are discussed in subsections as follows

10 http://www.espertech.com/esper/

2.4. Comparative Analysis 19

XChangeEQ[9]

XChangeEQ is developed under the context of complex event processing in XML
databases. The syntax of XChangeEQ is given as follows.

DETECT <Event Name> { Required Parameters }

ON <Event Structure>

WHERE <Filtering condition>

END

In short, the syntax of XChangeEQ consists of three major parts and one query termination keyword.
There are "DETECT, "ON" and "WHERE" for defining events, while "END" is used for terminating a
query. The "DETECT" part is for defining a name of an event and necessaries function and variable.
XChangeEQ is recognized as an expressive language for defining complex events in XML databases.

ETALIS[10]

ETALIS is developed as a generic complex event processing engine for continuous data streams. It
can be used in wide range of applications such as stock trading, logistic or traffic control. The Syntax of
ETALIS is written in a Fortran style function. Operators that are proposed in ETALIS are SEQ, AND,
PAR, OR, DURING, STARTS, EQUALS, FINISHES and MEET. They are not described here for the
brevity of our discussion. The reader can refer to [10] for more information concerning these operators

ETALIS provide a wide range of operators. ETALIS also prove to be usable in a pratical
application. ETALIS is also available one of the few languages that publish its source code as

an opensource project online
11

. The weakness of ETALIS is the fact that it adopts Fortran
style language which can be difficult for end-users to use.

2.4 Comparative Analysis

So far, we described previous studies that are related to proposing a complex event processing engine for a

multimedia sensor network. In this section, each of selected studies are being compared and analyzed against

the requirements described in Chapter 1. The result of the comparative study is given in Table 2.1.

The MSNs Modeling and Event Modeling requirements within Table 2.1 are elaborated more into
sub-requirements. The sub-requirements of MSNs Modeling requirement are related to (i) modeling list
of sensors, (ii) modeling location maps, and (iii) modeling sensor capabilities. The sub-requirements of
Event Modeling requirement are related to atomic event modeling and complex event modeling. The
complex event modeling requirement is elaborated furthered into two sub-requirements related to spatial
operators and temporal operators for modeling complex events. It can be seen from the table that there
is no existing study that can completely address all the requirements that we give in Chapter 1. The
studies on sensor network modeling which adopt a relational database [20, 21, 22] can be used for
modeling multimedia sensor network infrastructure well. However, their hard-coded database schematic
nature makes them not able to interoperate with several application domains efficiently. The study in [22]
can be used for modeling images gathered from a bridge surveillance camera. However, the method to
do so is considerably too limit to a bridge surveillance camera sensor. Hence, we still leave the
multimedia sensor data modeling support to be unmarked as it cannot support the modeling of different
types of multimedia sensors. The studies which adopt a graph database [23, 24, 25] are also have
similar limitation as the schematic for modeling nodes and edges are also hard-coded. On the other
hand, the SSN ontology can be used for modeling multimedia sensor networks, and can interoperate with
external application domain. None of the studies, which are related to sensor network modeling, can
satisfy the rest of other requirements.

11 https://code.google.com/archive/p/etalis/

20 CHAPTER 2. Related Studies on Complex Event Processing in Multimedia Sensor Networks

Table 2.1 – Comparative Analysis of Previous Studies Against the Requirements on
processing complex events in a multimedia sensor network

 Requirement

Related MSNs Multimedia Event Modeling Near Event Application

Study

Modeling

 Sensor Real-Time Detection Domain

 List Location Sensor Data Modeling Atomic Complex Event Event in Interoperability

Modeling

 of information capabilities Event Detection Historical

 sensors Modeling Spatial Temporal Data

Operators Operators

Sensor Network Modeling

FJording X X X - - - - - - -

IrisNET X X X - - - - - - -

Bridge Monitoring X X X - - - - - - -

G* X X X - - - - - - -

GeoSensor X X X - - - - - - -

WMSN Model X X X - - - - - - -

SSN-Onto X X X - - - - - - X

Multimedia Data Modeling and Retrieval

CVQL - - - X X X - - X -

SVQL - - - X X X X - X -

SPARQL-MM - - - X X X X - X -

Hunter’s
- - - X X

- - - X X

Ontology

DS-MIRF - - - X X

- - - X X

Ontology

Rhizomik’s - - - X X
- - - X X

Ontology

COMM
- - - X X

- - - X X

Ontology

MA-Ont - - - X - - - - - X

Complex Event Processing Engine

Snoop - - - - X - X X X X

CeDR - - - - X - X X X X

SaSE - - - - X - X X X X

ESPER - - - - X - X X X X

EP-SPARQL - - - - X - X X X X

XChangeEQ - - - - X - X X X X

ETALIS - - - - X - X X X X

Every study in multimedia data modeling and retrieval field can be used for modeling multimedia
sensor data as they are capable of modeling multimedia data itself. However, modeling sensor networks
or multimedia sensor networks is considered as out of the scope of these studies. All of these studies,
except the MA-Ont, can be used for modeling an atomic event and detecting historical events. However,
they are not designed for near real-time detection case. Only CVQL, SVQL and SPARQL-MM can be
used for modeling complex events as they propose a language for doing so. However, CVQL does not
contain any temporal operator because their language syntax is only a simple predicate based style and
cannot be used for representing a complex temporal relation pattern. The SVQL and SPARQL-MM can
support both spatial and temporal relations modeling. The MA-Ont is the only study in multimedia data
modeling and retrieval that can support multimedia sensor data modeling and application domain
interoperability requirement. The reason comes from the context of the development of this ontology
which focuses only on modeling multimedia metadata.

Every study in complex event processing engine group can support most of the requirements except

multimedia sensor networks Modeling, Multimedia Sensor Data Modeling, and Spatial Relation Modeling. The

reason comes from the fact that these studies are designed to process complex events regardless the choice

of an application domain. Hence, they can overcome every requirement that is related to event processing but,

they fail to satisfy the requirements that are specific to the multimedia sensor networks context. It is noted that

none of these studies propose any spatial relation operators for modeling spatial relations since they are

designed for a stream database or a business monitoring application.

From this comparative analysis, we conclude that none of the existing studies can fully address the
identified requirements on complex events modeling and detection in multimedia sensor networks.
Hence, in this work, we propose an ontology-based framework aimed to reach all these requirements.

Chapter 3

CEMiD Framework: Overview

To satisfy requirements on processing complex events in multimedia sensor networks (as
identified in Chapter 1), we propose a framework so-called CEMiD to support Complex Events
ModelIng and Detection in multimedia sensor networks. This chapter is dedicated to the
description of the general idea and the architecture of CEMiD. The details of the framework
are later elaborated in Chapter 4, 5, and 6, where each of framework component is described.

3.1 Architecture Overview of the CEMiD Framework

The main objective of the CEMiD framework is to allow users in different roles to be able to
freely define events according to their needs, while keeping low-level architecture to be the
same regardless users’ role or application domain.

In
fr

a
st

ru
ct

u
re

 d
e

ta
il

s
(e

.g
.

fl
o

o
r

p
la

n
,

lo
ca

ti
o

n
s,

 s
e

n
so

r
lis

t)

Sensor Data

Stream
 Complex Event

 Sensor Data Processing Engine

 Stream

Data
MSSN-Onto

 Sensor Data Preprocessor Annotated Atomic Complex

 Stream Sensor Data Event Event

Detection

Detection

Feature extraction

 Sensor Data & Annotation

Stream

Event Model Retrieval

Infrastructure

 Repository Handler

Model

 CEMiD MSSN-Onto Handler
MSSN-Onto

Event Model Interpreter

activate

(e.g., lamps, switches)
reports

st
or

ee
ve

nt
s

User

(End-User)

 Action/report Parse, interpret, and

Location Map

User response to

definition Repository

a user’s re uest

(Domain Sensor Network Event Model

 (written in Repository

Repository

Expert)

 CEMiD language) Event Occurrence

 Query Sensor Reading Repository

 Repository

Figure 3.1 – Architecture of the CEMiD framework

As shown in Figure 3.1, the architecture of the CEMiD framework is outlined in four main modules:

(i) Repository (ii) CEMiD Intrepreter (iii) Data Preprocessor, and (iv) Complex Event
Processing Engine. Their details are described as follows.

21

22 CHAPTER 3. CEMiD Framework: Overview

3.1.1 Repository

The Repository is defined to store all sensed data. component in which all data is stored. The
five types of data are stored in their respective repositories:

• Location Map: is used to store the description of the floor plan of the deployment site of
the sensor networks;

• Sensor Network: stores essential information concerning sensor network infrastructure. The data

that is needed to be modeled includes: the list of sensors within the network, capacities of
each sensor, and the location that each sensor is deployed in. Capacities of each sensor
should be modeled according to its hardware specifications. An example of capacities
includes output format types, accuracy, precision, drift, or battery capacities. The location that
each sensor can be installed into should be related to a predefined location map;

• Sensor Reading: All the raw sensor readings from the framework are processed and stored within

the sensor reading repository. All the sensor readings are modeled in such a way that related data

can be retrieved and translated easily during the event detection, and query processing;

• Event Condition: stores conditions that the framework can use for detecting events.
These condi-tions are modeled by users;

• Event Occurrence: stores actual occurrences of events according to predefined event

conditions provided by users.

All the data within the Repository is modeled and stored by using an ontology for modeling
multimedia sensor networks. Due to the lack of a suitable ontology for modeling multimedia sensor
networks, we propose a new ontology so called the Multimedia Semantic Sensor Network Ontology

(MSSN-Onto). The MSSN-Onto extends the SSN ontology to provide full-fledged capabilities for
modeling data for each of the repositories within this module. The ontology handler of the
Repository module is used to cope with all the MSSN-Onto related operations which include data
modeling, data storing and querying. The detail of the MSSN-Onto is described in Chapter 4.

3.1.2 CEMiD Interpreter

CEMiD Intepreter serves as a high-level interface to help users to interact with the framework.
Our framework proposes a language so called CEMiD language for modeling their needs. The
functionalities of CEMiD language are given as follows.

• Data and Event Modeling for Multimedia Sensor Networks: The CEMiD language can be
used for modeling all the data which users need to model and store within the Repository.
The data which can be modeled by the CEMiD language are: (i) a location map, (ii) a
sensor network infrastructure, (iii) an event condition.

• Reports and Action Modeling: The CEMiD language can also be used for modeling reports

and actions that the framework needs to be carried out when a certain event is detected;

• Historical Event Querying: Users can also use the CEMiD language to fetch events from
the gathered historical data;

• Compact and Intuitive Syntax: CEMiD language is inspired from SQL/SPARQL

language. The syntax is designed in such a way that users with a background in SQL
and SPARQL use the language with minimal learning curve.

3.2. Discussion 23

All the statements provided by users in CEMiD language cannot be used by the framework directly. It
is required to be translated into the form that is understandable by the framework. Due to the fact that
our framework is an ontological-based framework, we choose to translate CEMiD language statements
into SPARQL queries. Hence, all the translated queries can be used directly by all of the repositories in
the Repository of the framework. The translation process from CEMiD language to SPARQL is done by
using the MSSN-Onto Handler module. The details of CEMiD language are described later in Chapter 5.

3.1.3 Data Preprocessor

This component is responsible for preprocessing and annotating incoming sensor data streams by
using MSSN-Onto. This module operates automatically in response to every incoming raw sensor
reading. In the case that an incoming raw sensor reading is from a scalar sensor, a raw data value
can be annotated by MSSN-Onto directly. However, in a multimedia sensor case, all multimedia
sensor readings need to be decoded, having their low-level features extracted and annotated
before being modeled by MSSN-Onto. The features are extracted according to the MPEG7
recommendation. Outputs of this module are simultaneously pushed to the complex event
processing engine module and stored into the sensor reading repository.

3.1.4 Complex Event Processing Engine

The Complex Event Processing Engine is responsible for detecting events as defined by the users through the

CEMiD language. The detection process is launched automatically in response to every incoming sensor

readings. Our engine is capable of detecting events in a near real-time manner. The engine relies on a

pipelining-based mechanism which allows the framework to integrate all the multimedia data processing,

atomic event detection, and complex event detection tasks. The internal mechanism for handling all the event

detection pipelines within CEMiD framework is called the GST-CEMiD. The details of the GST-CEMiD and all its

related algorithms for processing events are described in Chapter 6.

3.2 Discussion

So far, we provided an overview of the architecture of the CEMiD framework. The CEMiD
framework proposes four main modules to handle all the tasks that are related to processing
complex events in multimedia sensor networks. These modules are developed on the top of three
elements of the framework which are (i) MSSN-Onto, (ii) CEMiD Language, and (iii) Complex Event
Processing Engine. The comparative analysis on how they can address requirements on complex
event processing in multimedia sensor networks (see Section 1.3) is given in Table 3.1.

The MSSN-Onto is designed to support MSNs modeling. It is also capable of modeling both
atomic and complex events. Moreover, it can be used in different kinds of application
domains. Hence, we mark X for every requirement except the near real-time event detection
requirement and event detection from historical data requirement because both of them are
more related to the complex event processing and detection than to data modeling.

The CEMiD language is designed to support MSNs modeling, event modeling, near real-time event

detection, and application domain interoperability. Hence, we mark X for all these supported requirements. The

only requirement that is not supported by the CEMiD language is the Event Modeling requirement because it is

done automatically through the data preprocessor using the MSSN-Onto as a basis.

The Complex Event Processing Engine is designed for processing near real-time event detection, event

detection from historical data and, application domain interoperability. Hence, all these three requirements are

marked X within the table. The other requirements are unmarked (i.e., unsupported) as they are more related

to data modeling related requirements than complex event processing related tasks.

24 CHAPTER 3. CEMiD Framework: Overview

Table 3.1 – Comparative Analysis of CEMiD Framework Features Against Requirements on
Complex Event Processing in MSNs

Requirements MSSN-Onto
CEMiD Complex Event

Language Processing Engine

MSNs Modeling

list of sensors X X -

location maps X X -

sensor capabilities X X -

Multimedia Sensor Data Modeling X - -

Event Modeling

atomic event modeling X X -

complex event modeling

- spatial operators X X -

- temporal operators X X -

Near Real-Time Event Detection - X X

Event Detection in Historical Data - X X

Application Domain Interoperability X X X

We dedicate the three following chapters for describing the details of each of the core
elements of the framework.

Chapter 4

MSSN-Onto: An Ontology for Modeling
Multimedia Sensor Networks

As we stated in the previous chapter, our CEMiD framework bases its functionalities on a core
ontology. In this chapter, we present our ontological data model for CEMiD, called the
Multimedia Semantic Sensor Network Ontology (MSSN-Onto). MSSN-Onto is designed not only to
save our framework, but also for modeling multimedia sensor networks itself in general without
relying on the framework. This means that sensor network developers can also reuse the
MSSN-Onto in their applications without adopting our whole framework.

Recall from Chapter 2, there is no existing ontology which can be used for modeling multimedia
sensor networks yet. There exists the SSN ontology [29] which proposes by W3C to be used as a generic
ontology for modeling sensor networks. However, its capability for supporting multimedia sensor network
modeling is limited. Hence, in order to avoid re-developing MSSN-Onto from scratch, we choose to
develop our MSSN-Onto by extending from SSN ontology. Our MSSN-Onto extends the SSN ontology by
proposing several new concepts to support multimedia sensor network modelings. This chapter begins
with a section dedicated to the analysis of missing features of the SSN ontology for supporting multimedia
sensor networks modeling. Afterward, we present the detailed description of our MSSN-Onto. Then, we
recommend instructions on how MSSN-Onto can be aligned with an application domain without relying on
the CEMiD framework. This chapter ends with a section for validating the capacities of MSSN-Onto for
modeling multimedia sensor networks.

4.1 Analysis of the missing features of the SSN ontology

The first step in developing MSSN-Onto is to analyze the existing features of the SSN ontology and identify
the missing features which prevents the it to fully support multimedia sensor network modeling. We
briefly summarize the SSN ontology before addressing the missing features and introducing our

extensions. According to the latest published version
1
, the SSN ontology is modularized into SOSA

(Sensor, Observation, Sample, and Actuator), a light-weight, yet self-contained core ontology for
modeling a sensor network, and SSN ontology, which imports the SOSA ontology and proposes more
concepts to describe a sensor network with more details. In what follows, we refer to the full SSN ontology
as SOSA/SSN ontology, while the term SSN ontology is used when we refer to concepts of the SSN ontology

1 Latest published version on 19 Octoberr 2017: https://www.w3.org/TR/vocab-ssn/

25

26 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

which does not exist within the SOSA ontology.
The SOSA/SSN ontology can model sensor networks using three different kinds of modeling perspec-

tives, depending on the user choice: (i) the Observation perspective, which models a sensor network as a
set of devices that can produce sensor readings; (ii) the Actuator perspective, which is used for modeling

a network of actuators
2

; and (iii) the Sampling perspective, which models a sensor network as a set of
devices which can produce data periodically. We choose to extend the SOSA/SSN ontology into MSSN-

Onto from the Observation perspective. Our choice is related to the fact that a multimedia sensor is not
always an actuator nor a device which periodically produces data. The Observation perspective of the
SOSA/SSN ontology is given in Figure 4.1.

Figure 4.1 – The SOSA/SSN Ontology (Observation Perspective)

Briefly, the SOSA/SSN ontology describes a sensor network through seven main modules
which cover different aspects of a sensor network. Sensor descriptions and capabilities are
defined using the following modules:

• Observation/Actuation/Sampling module: contains the fundamental concepts for
model-ing a sensor network, which are Sensor, Stimulus, Observation,
ObservableProperty, and FeatureofInterest. In short, a sensor is modeled using the
Sensor concept. A Sensor observes a FeatureOfInterest from a Stimulus and
produces a result as an Observation. A possible kind of value or feature that a sensor can
observe is modeled using ObservableProperty; This module also contains concepts that
are related to Actuator and Sampling perspectives. However, these concepts are not
depicted in Figure 4.1 as they are not related to the Observation perspective;

• Feature module: helps to model all properties and features that are used within a sensor

network. The properties and features can either related to sensor capabilities (e.g., output format,
precision, accuracy) or features that a given sensor can observe (e.g., temperature, brightness);

• System module: helpts to model a sensor network as a system which is composed of

multiple sensors. A system can also be divided into multiple sub-systems by using an
object property hasSubSystem. A system or a sub-system itself can also be a sensor;

2 An actuator is a device which reacts to a certain event (e.g., a lamp reacts when a motion sensor detects a movement).

4.1. Analysis of the missing features of the SSN ontology 27

• Procedure module: helps to model a sensing method of a sensor. Such a method has
an input information described by the Input concept, and has an output information
describes by the Output concept.

The operating restriction of a sensor network is described by:

• SystemProperty module: helps to model properties and operating constraints of each sensor
within a sensor network and also the network itself. In short, the capabilities of a sensor (e.g.,
accuracy, precision) are modeled using the SystemProperty concept. Survival constraints and
operating constraints are modeled using SurvivalRange and OperatingRange concepts;

• Condition module: helps to model a sensing constraint of a sensor as a constraint

block. For example, a wind speed sensor can be attached to a constraint block to
indicate that it can only capture data when the wind speed is between 10-60m/s;

The deployment related information is described by the following modules:

• Deployment module: A sensor is expected to be deployed at some specific location.
This module is used for describing such information and related process, and
constraints on deploying a given sensor device.

Finally, the observation result is described using the Result module, which contains only
a single concept, the Result. It is used for modeling a value of the Observation. The
format of the value is coded according to the FeatureOfInterest. When the result is a
simple value (e.g., a single numerical data or a short text), the value can be attached directly
to the Observation concept without using the Result concept.

Our analysis suggests that the missing SOSA/SSN ontology features are as follows:

• Floor Plan/Coverage Area Modeling: The SOSA/SSN ontology has Deployment module for
modeling a deployment location of a sensor. However, the comprehensive information of
the deployment site (such as a complete floor plan, possible coverage areas of sensors,
or a relation between locations, cannot yet be modeled within the SOSA/SSN ontology);

• Multimedia Sensor Modeling: The Sensor concept of the SOSA/SSN ontology can be used for

modeling a sensor in general regardless if it is a scalar or a multimedia sensor. However, the
capabilities of multimedia sensor (such as output data type, encoding method, mobility
property) are usually different from a scalar sensor. Hence, it is preferable to propose more
concepts for modeling a multimedia sensor and capabilities of a multimedia sensor;

• Multimedia Sensor Data Modeling: The Result of the SOSA/SSN ontology is used for modeling a

sensor reading from a sensor. The ontology specifies that a sensor reading should be modeled
either as an RDF literal or by using the concept Result. This can be used for modeling a simple
scalar value. However, it cannot be used for modeling a multimedia data as a sensor reading
semantically (i.e., modeling a multimedia data according to its low-level features). Hence, new
concepts for modeling multimedia sensor data is needed to be proposed;

• Atomic/Complex Event Modeling: The atomic and complex event modeling is not within the scope

of the SOSA/SSN ontology development. Hence, these features are not yet supported within the
SOSA/SSN ontology. New concepts for modeling atomic and complex events are needed as well.

The main reason why these following features are not included within the SOSA/SSN ontology lies in the

scope of the ontology definition. The SOSA/SSN ontology considers multimedia sensor and multimedia data as

application specific requirements. Hence, these missing features are not included within the core

28 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

SOSA/SSN ontology. The SOSA/SSN ontology document suggests that any missing features of the ontology

itself can be proposed by aligning the ontology with an external application specific ontology. However,
this can limit the generality of the ontology as the aligned external ontology itself is already limited to a
specific application domain. In this work, we propose MSSN-Onto which extends the SOSA/SSN ontology to
address all the missing features of the SOSA/SSN ontology for modeling multimedia sensor networks. The
details of the ontology are described in the following section.

4.2 Multimedia Semantic Sensor Network Ontology (MSSN-Onto)

MSSN-Onto is developed by extending the SOSA/SSN ontology, adding several new concepts,
and aligning some part of the ontology with external ontologies.

Figure 4.2 – Multimedia Sensor Network Ontology (MSSN-Onto)

Our MSSN-Onto ontology is depicted in Figure 4.2. In what follows (also in Figure 4.2), every ontology
concept is denoted in the format <prefix>:<concept_name>, where prefix is a an abbreviation
name of the ontology, and <concept_name> is the name of the concept. For example, ssn:System
refers to the System concept within the SSN ontology, while sosa:Sensor refers to the Sensor
concept of the SOSA ontology. The list of ontology prefixes that we use in this chapter are as follows.

• sosa: is a prefix for the Sensor-Observation-Sampling-Actuator ontology (a minimal version
of the SSN ontology proposed by W3C);

• ssn: is a prefix for the Semantic Sensor Network ontology;

• mssn: is a prefix for the Multimedia Semantic Sensor Network Ontology (our proposal);

4.2. Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 29

• app: is a prefix for an application specific ontology such as a smart meeting room or a
smart office ontology (for illustration purpose only).

The extensions that we have done to the SOSA/SSN ontology to propose MSSN-Onto can be
categorized into four main extensions according to the missing features as given in the
previous section. They are described as follows.

4.2.1 Floor plan/coverage area modeling extension

This extension allows MSSN-Onto to be able to model a floor plan of the sensor network deploy-
ment site, and all potential coverage areas that sensors within the network can cover. To do so, we
extend the sosa:Platform concept into mssn:Location and mssn:LocationMap. Briefly, a
mssn:Location is used for modeling a location which a sensor within the network can either be
deployed into or can be observed (i.e., a coverage area). A mssn:LocationMap is used for
modeling a floor plan as a map of multiple locations. The relation between each location within the
mssn:LocationMap is expressed using a mssn:LocationRelation. MSSN-Onto comes with

a predefined set of location relations which can be categorized into three categories
3

:

• Topological Relations: This group of relations identifies the topological structure between pairs of
locations. Nine predefined topological relations are provided: equals, disjoint, intersects,
touches, contains, covers, covered by, within, overlaps, and crosses.

• Distance Relations: This group of relations indicates the distance information between each pair of

locations. The predefined distance relations in our framework are: closeTo and farFrom.

• Directional Relations: This group of relations indicate the direction from one location to an-
other. The predefined directional relations are: leftOf, rightOf, opposite,
above, below.

Formal definitions of mssn:Location and mssn:LocationMap concepts are given in Def. 1 and
Def.2. It is to be noted that our data model is an ontology. Hence, Internationalized Resource

Identifier
4

(IRI) is used as an identifier to every concepts and instances within the ontology as it is the
currently the most adopted approach for modeling data within an ontology. Therefore, Def. 1, Def.2 and
all other definitions given in this chapter includes at least one iri component for modeling its IRI identifier.

Definition 1 Location: A location, denoted as l, is a 3-tuple for describing a location, defined as
l =< iri, n, p >, where:

• iri: is an identifier to a location l given in IRI format;

• n : is a location name given in a plain text format;

• p : is a a value that is associated with the location n (e.g., GPS coordinate, room name, floor
number). The format of pi depends on the application domain;

Definition 2 Location Map: A location map, denoted as LM, is a directed graph, defined as LM =<
iri, V , E, F >, where as:

• iri: is an identifier to a location map LM given in IRI format;
3 each set can be extended as of the needs of the applications

4
https://tools.ietf.org/html/rfc3987

30 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

• V : is a set of vertices representing locations, such that V = {l1, l2, ..., ln}, ∀li ∈ V , łi =< irii , ni ,

pi > (Def. 1);

• E: is a set of edges that establishes relations between two vertices, vi and vj ;

• F:V xV ⇒ R: is k-dimensional relation, indicating maximum k relations between two vertices,
such that:

< vi , vj > ∈ E ⇔ F(vi , vj) =
k
m=1{rijm | rijm is a text describing the relation name between vi , vj

∈ V }

In short, the mssn:LocationMap concept is used for modeling location information as a directed
graph with named edges. Each node within the graph represents a location. Edges between each pair of
locations represent relations between them. Relations can be multi-dimensional modeled using multiple
edges. Users can freely define an edge name when describing a location relation.

Figure 4.3 – Illustration on location map modeling by using the MSSN-Onto

Figure 4.3 depicts how to use MSSN-Onto to model a simple location map with three locations. In
this case, we model a location map for modeling an office room with three tables. Two tables are
located next to each other, while another table is located opposite to both tables. In this case, we
models three instances of mssn:Location which are table1, table2 and , table3 for
modeling tables within the office. To model relations between them, three instances of
mssn:LocationRelation are created. op1_nextTo is used for modeling that table1 is next
to table2. op2_opposite is used for modeling that table2 is opposite to table3.
op3_opposite is used for modeling that table1 is opposite to table3.

4.2.2 Multimedia sensor modeling extension

In SOSA/SSN ontology, the sosa:Sensor is proposed for modeling a sensor. It is intended to be used as a
generic concept for modeling every sensor within a sensor network application. However, in the
multimedia sensor networks context, one generic concept for all kind of sensors may not be sufficient as
a sensor in this context can be categorized as either a scalar sensor or a multimedia sensor. Therefore,
for the sake of clarity on defining a sensor type, another concept, the mssn:MediaSensor, is proposed
within MSSN-Onto (see Figure 4.2). Users of MSSN-Onto should instantiate a scalar sensor through the
sosa:Sensor, while a multimedia sensor should be instantiated from the mssn:MediaSensor. Both
of these concepts can be formalized in one unified formal definition as given in Def. 3.

4.2. Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 31

Definition 3 Sensor: A sensor, denoted as s, is an entity that can sense data (scalar or multimedia). It

is defined as a 7-tuple, s =< iri, plt, M, m, FI , i, CP, CA > where:

• iri: is an identifier to a sensor s given in IRI format;

• plt: is the platform where a sensor is deployed to, which is a location within a predefined

location map, plt ∈ LM.V (Def. 2);

• M: is a set of media types that s concerns. M = {m1, m2, m3, ..., mn} | mi ∈ {V ideo, Audio, I

mage,-T ext, N umeric};

• m: is an IRI to a sensing method that a sensor s is used;

• FI: is the set of features of interest that s can observe. FI = {f i1, f i2, f i3, ..., f in}, ∀f ii ∈ FI , f ii

is a name of a feature (e.g., temperature, brightness, motion, face);

• i: is the stimulus that a sensor s observes before triggering its data capturing function;

• CP: is the set of measurement capabilities such that CP = {cp1, cp2, cp3, ..., cpn} cpi ∈ CP, cpi

is a sensing capability of s such as accuracy, resolution, latency;

• CA: is the set of coverage areas of s, modeled as CA = {l1, l2, l3, ..., ln}, ∀li ∈ CA, li ∈ LM.V (Def.

2);

The mssn:MediaSensor is used as a generic class for modeling a multimedia sensor. An instance
of mssn:MediaSensor can have one or more mssn:MediaTypeConcerned for modeling types of
media that a given multimedia sensor can produce. Types of data that a multimedia sensor can pro-duce
are video, audio, image, text, numeric and miscellaneous. They are modeled by using concepts

mssn:VideoType, mssn:AudioType, mssn:ImageType, mssn:TextType, mssn:Nu-

mericType and mssn:MiscType. Note that the mssn:MiscType type is used in the case that a
pro-duced multimedia type is neither audio, image, text, nor numeric (e.g., a PDF file). The MSSN-

Onto comes with four predefined sensor types: mssn:VideoSensor, mssn:AudioSensor,
mssn:AudioVid-eoSensor and mssn:ImageSensor. They are depicted in Figure 4.4

Figure 4.4 – Predefined Sensor Type in MSSN-Onto

32 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

mssn:VideoSensor is a concept that is used as a generic concept for every video sensor such as
a video camera, a webcam or an embedded camera module. This kind of sensor produces a stream of
video as an output. Hence, it has mssn:VideoType as its concerned media type. mssn:AudioSensor,
mssn:AudioVideoSensor and mssn:ImageSensor are also proposed to be used as a generic
concept for modeling a sensor of their respective type. It is noted that mssn:AudioVideoSensor is
designed to be used for modeling a sensor that can produce both audio and video. Hence, it has both
mssn:VideoType and mssn:AudioType as its media concerned. The illustration on how we can
instantiate sensors from MSSN-Onto is given in Figure 4.5.

Figure 4.5 – Illustration on instantiating sensors in the MSSN-Onto

Figure 4.5 depicts the instantiation of three sensors, a motion sensor, a video camera and a smart
projector. An instance mot1 is instantiated from a concept app:MotionSensor, an application specific
concept designated for modeling a motion sensor. This sensor is a scalar sensor so,
app:MotionSensor is inherited from sosa:Sensor. Another instance, vid1 is instantiated from
mssn:VideoSensor for modeling a video camera. The last instance, proj1, in Figure 4.5 illustrates
how a special kind of multimedia sensor can be modeled. In this case, we choose to model a smart
projector sensor. This sensor is a device which can capture a video footage of the presentation and
record the presen-tation file that is used during the presentation. The concept app:SmartProject is
proposed by inheriting from mssn:MediaSensor to indicate that it is an application specific multimedia
sensor type. It has mssn:VideoType and app:PresentationFile as its concerned media type. The
app:PresentationFile is proposed by inheriting from mssn:MiscType as a presentation file is
neither a video, an audio, an image, a text or a numerical data.

After all the sensors (scalar or multimedia) are properly modeled, users need to group multiple sensors

together to form a sensor network, modeled using ssn:System concept. Formal definitions for the

4.2. Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 33

ssn:System concept is given in Def. 4.

Definition 4 System: A system is an aggregation of multiple sensors. It is defined as sys =< iri, plt, SS

> where as:

• iri: is an identifier to a system sys given in IRI format;

• plt: is the platform where sys is deployed to, which is a physical location where plt ∈ LM.V (Def.
2);

• SS: is the set of sensors, SS = {s1, s2, s3, ..., sn}, ∀si ∈ SS, si is a sensor (Def. 3).

It is noted that the original SOSA/SSN ontology models a sensor network only as a
collection of sensors represented by ssn:System. Additional information (e.g., topology,
connection method) is not used when modeling a sensor network. We also choose to follow
the same method for modeling a sensor network in MSSN-Onto. Nevertheless, we can extend
the definition of ssn:System in the future to model more sensor network related information.

4.2.3 Multimedia sensor data modeling extension

The SOSA/SSN models every incoming sensor reading by using an sosa:Observation concept. An
sosa:Observation contains information regarding (i) which sensor is used, (ii) an observation result
value, (iii) which feature, object or phenomenon that the result value is describing, (iv) a related
coverage area (v) a time of the observation, and (vi) a duration that the observation is covered up to.
The formal definition of an sosa:Observation concept is given as follows.

Definition 5 Observation: An observation, denoted as o, is the information that a sensor produces for

every triggering of its sensing method, It is defined as a 7-tuples, o =< iri, s, f i, r, ca, t, t
′
 >, where:

• iri: is an identifier to an observation o given in IRI format;

• s: is the sensor that is used for producing o (Def. 3);

• f i: is the feature of interest of o, f i ∈ s.FI;

• r: is an outcome of the observation o encoded in a format according to f i;

• ca: is the coverage area of o and ca ∈ s.CA;

• t: is the timestamp of the observation o;

• t
′
: is the duration that observation o (can be empty with instant observation).

In a scalar sensor data case, a sensor reading value can be attached to an sosa:Observation concept

directly. Hence, the extension to the MSSN-Onto is not neccesary for modeling a scalar reading. However,
concepts for modeling multimedia sensor readings are not given in the SOSA/SSN ontolgy. Hence, an extension
is needed to be proposed. The MSSN-Onto extends the SOSA/SSN ontolgy and propose
mssn:MultimediaData, mssn:MediaSegment, and mssn:MediaDescriptor concept
(see Figure 4.2). Their formal definitions are given as follows.

Definition 6 MediaSegment: A media segment, denoted as ms, is a segment of a multimedia data,

defined as a 6-tuple ms =< iri, p, t, t
′
, MD, SMS >, where as:

• iri: is an identifier to a media segment ms given in IRI format;

34 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

• p: indicates the type of the media segment ms and p ∈ {V ideo, Audio, I mage, T ext};

• t: is the timestamp of the beginning of the media segment ms;

• t
′
: is the duration of the media segment ms. If t

′
 = null, this means that ms does not have duration

(e.g., a segment of an image or a single video frame);

• MD: is a set of media descriptors, such that MD = {md1, md2, md3, ..., mdn} and ∀mdi ∈ MD,

mdi is an MPEG7 media descriptor;

• SMS: is a set of sub-media segments, such that SMS = {ms1, ms2, ms3, ..., msn} and ∀msi ∈ SMS,

msi =< pi , ti , ti
′
, MDi , SMSi >. SMS or SMSi can be ∅.

Definition 7 Multimedia Data: A multimedia data, denoted as mm, is a multimedia data file defined as

a 3-tuple, mm =< iri, st, MS >, where as:

• iri: is an identifier to a multimedia data ms given in IRI format;

• st: is the location of the multimedia file m, within storage or memory;

• MS: is a set of media segments that are contained within the multimedia file m, defined as

MS = {ms1, ms2, ..., msn}, ∀msi ∈ MS, msi is a media segment (Def. 6).

In short, for a multimedia sensor reading case, a multimedia data file (produced by a sensor) is
modeled by using the mssn:MultimediaData concept. This concept models a multimedia file as
an object which contains multiple media segments. Each media segment is modeled using the

mssn:MediaSegment concept. mssn:MediaSegment can be attached to multiple
mssn:Media-Desscriptor to describe its low level features. Media descriptors that we use in
our framework adopt the MPEG-7 standard. The mssn:MediaDescriptor is a generic concept
for modeling low-level features. We categorize low-level features of multimedia data into six
categories according to MPEG-7 descriptor groups [42]: (i) motion descriptor; (ii) annotation
descriptor; (iii) audio descriptor; (iv) visual descriptor; (v) spatial descriptor; and (vi) temporal
descriptor. Several main MPEG-7 predefined descrip-tors are added into MSSN-Onto. They are not
all given in Figure 4.2 for the sake of clarity in the figure. They are instead given in Table 4.1.

Table 4.1 – List of predefined media descriptors in MSSN-Onto

Descriptor Type Predefined descriptors

AnnotationDescriptor TextAnnotationDescriptor

 FundamentalFrequency, HarmonicDescriptor, PowerDescriptor, SpectrumBasis,

 SpectrumCentroid, SpectrumEnvelop,SpectrumFlatness, SpectrumProjection,

AudioDescriptor SpectrumSpread, WaveForm, HarmonicSpectralCentroid, HarmonicSpectralDeviation,

 HarmonicSpectralSpread, HarmonicSpectralVariation, LogAttackTime,

 SpectralCentroid, TemporalCentroid

MotionDescriptor CameraMotionDescriptior, MotionActivityDescriptor, WarpingParameters,

TrajectoryDescriptor, ParametricMotionDescriptor

SpatialDescriptor BoundingBoxDescriptor, PointDescriptor

TemporalDescriptor MediaTimePointDescriptor, MediaDurationDescriptor

 ColorLayoutDescriptor, ColorStructureDescriptor, ContourShapeDescriptor,

VisualDescriptor DominantColorDescriptor, EdgeHistogrameDescriptor, FaceRecognitionDescriptor,

 ScalabaleColorDescriptor

4.2. Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 35

It is noted that it is not obligatory to use all descriptors all the time. One can choose which low-
level feature to index depending on the application requirements. Figure4.6 shows the instantiation
of MSSN-Onto within the motivating scenario previously provided. The example in Figure 4.6 shows
the illustration on the usage of the MSSN-Onto for modeling a result from a video camera. The video
camera is modeled as an instance name vid1. The observation of this sensor is modeled using the
instance vid1_obv1. The timestamp of the observation is recorded and modeled by attaching the
timestamp literal with the instance through resultTime relation.

Figure 4.6 – Illustration of multimedia data modeling with MSSN-Onto

The actual multimedia data result produced through this observation is modeled by rec1
instance which is an instance of mssn:MultimediaData. The raw multimedia data produced
from vid1 sensor contains only one video track. Hence, rec1 contains only one segment modeled
by the instance rec1_s1. Two more instances rec1_s1_sp1, rec1_s1_sp2 are modeled for
modeling low level features of the rec1_s1. In this case, we model the face recognition descriptor
at the time 00:01:05 and 00:01:10. Instances fdesc_1 and fdesc_2 are instantiated and attached
to rec1_s1_sp1 and rec1_s1_sp2 for modeling the face recognition descriptor value.

4.2.4 Atomic/complex modeling extension

An atomic event is an event that can be detected using one sensor reading a sensor. To detect an atomic
event, it is required to evaluate a given sensor reading against a predefined condition. For example, an atomic

event High Temperature can be detected when a sensor reading from a temperature sensor satisfies the

function: A_reading_value_is_greater_than_25_Celcius. In MSSN-Onto, we

36 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

model such a function for detecting an atomic event by using mssn:AtomicEventCondition.
The formal definition of an mssn:AtomicEventCondition is given as follows.

Definition 8 Atomic Event Condition: An atomic event condition, denoted as ACond is a user-defined
function for detecting an atomic event. It is defined as a 4-tuple, ACond =< iri, S, f , P >, where:

• iri: is an identifier to an atomic event condition ACond given in IRI format;

• S: is a set of sensors that can be used as an input for ACond (see Def. 3);

• f : is the IRI to the user-defined function (or a built-in framework fuction) for detecting the atomic

event;

• P: is a set of additional parameters that the function f requires to operate. P can be ∅.

A complex event is an aggregation of multiple events connected together as a pattern. For
example, an event temperature in the office is too hot to work can be modeled as an event that is
composed of two simultaneous occurrences of atomic events Face_Detected and
High_Temperature (i.e., a surveillance camera detects at least one person in the room while the
temperature within the room is hot). In MSSN-Onto, a complex event pattern is modeled using the
mssn:EventStatement concept. This concept consists of an event statement modeled in a plain
text format The formal definition of the mssn:EventStatement concept is given as follows.

Definition 9 Event Statement: An event statement, denoted as es, is a statement that describes a

complex event pattern from predefined atomic event conditions. It is defined as a 2-tuple, es =< iri, st

>, where as iri is the identifier to es given in IRI format, and st is the event statement according to the

CEMiD language, given in a plain text format.

Briefy, an event statement is a plain-text data which describes a complex event by combining
multiple atomic event conditions together according to a given event operator. The syntax of the
event statement is described later in Chapter 5. An actual occurrence of an event is modeled using
mssn:AtomicEventOccurence, while an actual occurrence of a complex event is modeled using
the mssn:ComplexEventOccurrence concept. The formalization of both types of event
occurrences can be unified into one single formalization as follows.

Definition 10 Event Occurrence: An event occurrence, denoted as ec, is a binary tree which a parent
node represents an event operator, while left and right siblings are either sub-trees representing other

event occurrences or atomic event occurrences (modeled as a tuple between an atomic event condition

and an observation), ec =< iri, op, l, r > where:

• iri: is an identifier to an event occurrence ec given in IRI format;

• op: is a node for representing a complex event operator, op is null is an event occurrence is atomic;

• l (and r): is either a sub-tree representing another event occurrence or an atomic event

occurrence. Formally, l =< ACondi , oi > | < opi , li , ri >), ACondi is an atomic event condition

(see Def. 8), and oi is an observation value (see Def. 5) which satisfies ACondi (< ACondi , oi > is
called an atomic event occurrence).

4.2. Multimedia Semantic Sensor Network Ontology (MSSN-Onto) 37

Figure 4.7 – Illustration of an atomic event condition and an event statement modeling

The illustration on how an atomic event condition and an event statement can be defined is shown in
Figure 4.7. The figure depicts the instantiation of one event statement toohot_working and two
atomic event conditions, face_detected and high_temp. The face_detected is used for modeling
an atomic event condition for detecting a face within a video. The high_temp is used for modeling an
atomic event condition for detecting a case which a temperature sensor reads a value that is higher than
25. Detection functions for both of these conditions are modeled by attaching a literal indicating a
function name to the corresponding atomic event condition instance with conditionFunction relation.
Some function may require an additional parameter (e.g., a greater_than function requires a decision
threshold value). The additional parameter is modeled through the conditionParameter function.
The illustration on how event occurrences related to atomic event conditions and an event statement of
Figure 4.7 can be modeled is depicted in Figure 4.8. Figure 4.8 contains two atomic event occurrences
and one complex event occurrence. The atomic event occurrence instances are face_oc1 and
hightemp_oc1. They are detected by applying face_detected and high_temp conditions against
sensor reading instance fdesc_1 and temp_obv1. Both of these occurrences satisfy an event
statement toohot_working. Hence, we create an instance toohot_oc1 and attach it to both of these
atomic event occurrences through hasOccurrence relation.

To express a relation between fdesc_1 and temp_obv1 according to an event statement
toohot_-working, the event statement in the plain text format of this instance is face_detected
OVERLAPS high_temp. Hence, an event operator is instantiated with the event operator name indicated
as OVERLAPS. The operator connects two occurrences fdesc_1 and temp_obv1 together with rela-
tions operator and operand. It is to be noted that we have not explained in details all the syntax and
operators for expressing an event statement. This will be described later in Chapter 5 dedicated to the
syntax and operators of language for describing complex events.

38 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

Figure 4.8 – Illustration on event occurrences modeling

4.2.5 Discussion

So far, we described our MSSN-Onto through both formal definitions and illustrations. MSSN-Onto
addresses thoroughly the features are missing from the SOSA/SSN ontology for supporting multimedia
sensor networks. Hence, we can not only use MSSN-Onto as a core ontology of our CEMiD framework, but
it can also be used for modeling multimedia sensor networks in general. In order to verify and validate
the suitability of MSSN-Onto, we dedicate Section 4.3 and 4.4 of this chapter for verifying and validating
the suitability of MSSN-Onto as a standalone ontology without relying on the CEMiD framework.

4.3 Aligning MSSN-Onto with Application Domain Ontologies

In order to use the MSSN-Onto without having any process or framework built on top, it is obligatory
to align the ontology with an application domain ontology to enable the capacity to define and
detect events. This process is needed to be done manually in the case of using the MSSN-Onto as a
standalone ontology. The manual alignment process consists of four steps as follows:

1. Importing MSSN-Onto The first step consists of importing MSSN-Onto
5
 into an application

domain ontology.

2. Aligning the application domain sensor network concept with ssn:System

Next, the user should determine the concepts within their application domain ontology that have to
be aligned with MSSN-Onto. In MSSN-Onto (and also in SSN ontology), the concept ssn:System

5 Using the following URI: http://mssn.sigappfr.org/

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 39

is used for modeling a sensor network. This step for aligning MSSN-Onto with an application
domain ontology is to identify the concepts that can be mapped with the ssn:System such that,
they can be used for modeling a sensor network concept. Any concept of an application domain
ontology used for representing a set, a collection, or an aggregation of sensor devices can be
aligned with the ssn:System concept. For example, in a smart office ontology, a concept
representing a Room (or a Building) can be aligned with the ssn:System since a room (or a
building) can have multiple sensor devices installed inside. The alignment between such a
concept and the ssn:System is to be done using an inherits relation such that, the sensor
network concept from an application domain can inherit the properties of ssn:System concept.

3. Aligning application domain sensors with sensor concepts of the MSSN-Onto

This step of the alignment is a straightforward alignment between concepts used for modeling
sensors in the application domain with either sosa:Sensor or mssn:MediaSensor. In short, a
scalar sensor concept should be aligned with the sosa:Sensor , while a multimedia sensor
concept should be aligned with the mssn:MediaSensor. The alignment for both cases can be
done using the inherits relation in such a way that sosa:Sensor or mssn:MediaSensor are
superclasses and sensor concepts from the application domain are subclasses.

4. Managing mssn:MediaDataConcerned

The last step of the aligning process is needed only if the application needs specific multimedia
sensor type representations such as, a smart board sensor or a smart projector sensor. One
needs to specifically define the output data type that these application-specific sensors produce.
This can be described by adding the relation has concerned media type from each sensor
concept to their corresponding mssn:MediaDataConcerned concepts. For example, in a smart
meeting room application, we can model a camera SmartBoard (a whiteboard which can record
both video and penstroke information) as a concept having mssn:VideoData and
mssn:TextualData as related media data (pen strokes can be represented in a coded text
format describing x-y position and color of the pen stroke).

The illustration on how the alignment process can be done is illustrated in the next section
along with the experimental evaluation of MSSN-Onto and the framework design.

4.4 Validation: Application of the MSSN-Onto in a real-world
sce-nario

In order to evaluate the MSSN-Onto in different aspects, we conduct three groups of tests:

• Generality Evaluation: the aim of this test is to demonstrate and verify that our MSSN-

Onto is generic and practical to be used in different application domains;

• Modeling Capacity Evaluation: this test is to evaluate the event modeling and retrieving
capacity of the MSSN-Onto by means of prototyping;

• Performance Evaluation: this test is to evaluate the retrieval performance of the framework and to

measure the overhead of the store space (i.e., size of the data represented with the MSSN-Onto).

We have implemented our MSSN-Onto in Protége
6
. The MSSN-Onto is written in OWL

language
7
. Its corresponding description is available online at http://mssn.sigappfr.org. In the

following subsections, we detail each evaluation and obtained results.
6

http://protege.stanford.edu/
7 https://www.w3.org/TR/owl2-overview/

40 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

4.4.1 Generality Evaluation

The objective of the generality evaluation is to validate the capacity of the MSSN-Onto on
accommodating different application domains through the ontology alignment process. So far,
we align our ontology with two different ontologies of two different projects. The details of
these projects and how we align the MSSN-Onto to their ontologies are given as follows.

4.4.1.1 Aligning the MSSN-Onto with the AMI Smart Meeting Room ontology

AMI Smart Meeting Room is a smart meeting room project which is initated by IDIAP Consortium in 2005

[56]. This project aims to propose a smart meeting room which is capable for summarizing the content
of the meeting and detecting events occurred within a meeting room such as presenting, change of

a presenter, brainstorming, or end of the meeting. To develop such an application, we
need to deploy sensors within a meeting room and develop a system that can gather and detect events
from the sensor readings. In this case, the IDIAP consortium has proposed to deploy sensors within a
smart meeting room prototype. The prototype is named the AMI Smart Meeting Room. The architecture
of AMI smart meeting room is given in Figure 4.9.

Camera_TopVIew

P3 P2

Camera1
MicrophoneArray1

 MicrophoneArray2

P4 P1

Figure 4.9 – Illustration on event occurrences modeling

In short, there are six types of sensors which are deployed within AMI smart meeting room. They are (i)
video camera, (ii) webcam, (iii) microphone array, (iv) headset, (v) smart projector, and (vi) smart whiteboard.
Two video cameras are installed to capture the top view angle of the room and the projector screen. Four

webcams are installed to capture close up shots of every attendees. Microphone arrays
8
 and headsets are

used for capturing attendees’ speech. One smart projector is installed to capture the projected screen. One
smart whiteboard is installed for capturing penstrokes information on the whiteboard. IDIAP

 8

A microphone array is an audio sensor which composes of multiple microphones. It can capture both audio and
direction of the originate audio source

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 41

consortium has released all the captured data from AMI smart meeting room online as a
corpus named AMI Corpus. The corpus can be found online

9
.

We choose to use AMI smart meeting room as one of the selected scenario for the validation
process because the availibility of the AMI Corpus. There is no need for us to redeploy a sensor network
for a smart meeting room from scratch as all the data is already available within the corpus. However, in
order to use our MSSN-Onto with AMI Corpus. First, we need to propose an ontology designated to the
AMI Corpus as it is not existed. Next, we need to align MSSN-Onto with the AMI ontology.

Towards the development of such system, we need to model the multimedia sensor
network infrastruc-ture and the events that can be detected in this scenario. For this purpose,
we formulated the AMI smart meeting room ontology, as given in Figure 4.10.

 has atte dee’ at least 2 ami:MeetingAttendee has role’ so e ami:MeetingRole

 co cer ed o ’ so e ami:ConcernedTopic

ami:MeetingSession take place i ’ e actl 1 ami:MeetingRoom

 related docu e t’ so e ami:RelatedDocument inherit ami:PresentationFile

 occurred duri g’ e actl 1 ami:MeetingSchedule ami:VideoCamera

 has meeting equipment’ some ami:MeetingEquipment inherit ami:WebCam

 ami:MicrophoneArray

 ami:Headset

 ami:SmartProjectorSensor

 ami:SmartWhiteboardSensor

Figure 4.10 – The AMI Smart Meeting Room Ontology

Next, we aligned MSSN-Onto with the AMI smart meeting room ontology, by following the
process as given in Section 4.3. We elaborate the alignment process for the AMI ontology
case in a step by step manner as follows.

1. Aligning the AMI sensor network concept with ssn:System

In the AMI ontology, the ami:MeetingSession is a concept that is used for representing a
single session of a meeting. We deem that this concept can be used for representing a
sensor network because there are several pieces of equipment (i.e., sensors) that are used
within a meeting session. Hence, we aligned the ami:MeetingSession with ssn:System.

2. Aligning AMI sensors concepts with sensor concepts of the MSSN-Onto

All meeting equipment concepts (i.e., ami:MeetingEquipment and its sub-concepts) can be all
considered as multimedia sensors. Hence, we aligned them with mssn:MediaSensor.

9 http://groups.inf.ed.ac.uk/ami/corpus/

42 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

3. Managing mssn:MediaDataConcerned

Among meeting equipment concepts in the AMI ontology, ami:SmartProjectorSensor and
ami:SmartWhiteboardSensor are not existed within a set of predefined media sensor types
(see Figure 4.2). Hence, we need to provide an information on the types of multimedia data that
they produce. For example, a smart whiteboard sensor, ami:SmartWhiteboardSensor,
produces video footages, images and pen stroke information as an output as an XML string. Thus,
we aligned this concept with mssn:VideoData, mssn:ImageData and mssn:TextualData as
their concerned media data type.

The result of the alignment can be seen in Figure 4.11.

ssn:System

inherit

 has atte dee’ at least 2 ami:MeetingAttendee has role’ so e ami:MeetingRole

co cer ed o ’ so e

 ami:ConcernedTopic

ami:MeetingSession

take place i ’ e actl 1
 ami:MeetingRoom

sosa:Sensor

related docu e t’ so e ami:RelatedDocument

occurred duri g’ e actl 1

ami:MeetingSchedule

has meeting equipment’ some ami:MeetingEquipment

inherit

 inherit

mssn:MediaSensor
inherit

mssn:VideoSensor

 ami:VideoCamera

inherit

ami:WebCam

mssn:AudioSensor

 ami:MicrophoneArray

inherit

ami:Headset

mssn:MediaDataConcerned

 ami:SmartProjectorSensor

 inherit

has co cer ed edia t pe’

ami:PresentationFile

mssn:MiscData

inherit

has co cer ed edia t pe’

mssn:TextualData

ami:SmartWhiteboardSensor

has co cer ed edia t pe’

 mssn:VideoData

 has co cer

ed edia t pe’

 mssn:ImageData

has co cer ed edia t pe’

 mssn:TextualData

Figure 4.11 – The alignment between the AMI Smart Meeting Room Ontology and the MSSN-Onto

4.4.1.2 Aligning MSSN-Onto with the HIT2GAP ontology

The HIT2GAP
10

 is an EU joint collaboration research project (EU/H2020 Grant Agreement No:680708)
for developing a next generation building control tool for optimizing an energy usage. The main objective
of this project is to propose a new paradigm of an energy management platform for a smart building. The

10 http://www.hit2gap.eu

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 43

project members consist of 22 partners from 10 European countries. The HIT2GAP platform is
an ontology based platform which allows different partners to query for data and events from a
smart building data. The architecture of the HIT2GAP platform is given in Figure 4.12.

Figure 4.12 – The architecture of the HIT2GAP platform

The Data Model Layer in Figure 4.12 is used for modeling and storing data within the platform.
The data model is called the H2G Model. This data model is based on an ontology so called the
HIT2GAP ontology developed by aligning ontologies provided by the project partners into a single
ontology. Our MSSN-Onto is among one of the ontologies that are being aligned to enable the
platform to model sensor readings that are gathered from multimedia sensors within a building
(e.g., surveillance camera). The alignment can be seen in Figure 4.13

Not all the concepts within the HIT2GAP ontology are given in Figure 4.13 for the sake of
brevity. It is to be noted that the concepts that are prefixed with h2g: are newly proposed in the
HIT2GAP ontology. Concepts that are not prefixed are taken from other partners. To explain briefly,
we followed the three steps alignment as given in Section 4.3. The details are given as follows.

1. Aligning the HIT2GAP sensor network concept with ssn:System

In the HIT2GAP platform, there is a concept called IfcRelAggregates that is taken

from a smart building ontology
11

. It is used for representing an aggregation of devices
(i.e., a system that con-sists of multiple devices). Hence, we aligned the ssn:System
with the ifcRelAggregates concept.

11 http://openbimstandards.org/standards/ifcowl/

44

isA IfcObjectDefinition

 IfcOccupant

 IfcA ctor

isA

 IfcProduct

 isA
RelatedEle ments

isA

isA

isA

 H2G:Platform

isA

 IfcDoor

 IfcSensor

Figure 4.13 – The alignment of MSSN-Onto with the HIT2GAP ontology

2. Aligning HIT2GAP sensor concepts with sensor concepts of MSSN-Onto

The only concept that is used for representing a sensor within the HIT2GAP ontology is
the ifcSensor. We aligned it with the sosa:Sensor and mssn:MediaSensor. The
HIT2GAP ontology aims to be a generic ontology for a smart building. Hence, unlike the
AMI smart meet-ing room case, there is no specific type of sensors that is modeled
within the ontology. Hence, we did not have to align any further concept within the
ontology with either sosa:Sensor or mssn:MediaSensor. Such an additional
alignment might be needed later in a practical imple-mentation when we have a specific
list of sensors from a building that the HIT2GAP platform will be deployed.

3. Managing mssn:MediaDataConcerned

No alignment has been done in this step (due to the lack of media sensors).

The HIT2GAP project is currently on-going. Hence, we have not had any experiment result in a
real implementation scenario yet. The result is expected to be available by the end of 2019.

4.4.1.3 Remark

In this section, we aimed to show how we evaluated the generality of MSSN-Onto by means of practically
aligning MSSN-Onto with different ontologies from different application domains. This method can be
subjective and time-consuming as the alignment is done manually so far. Nevertheless, it is important to
note that the alignment of MSSN-Onto to the AMI ontology and the Hit2Gap ontology was done easily

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 45

and quickly without any difficulty. Of course, an efficient method for assisting the aligning of the ontology

(either an automatic or a semi-automatic alignment) will be beneficial and proposed in our future study.

4.4.2 Modeling Capacity Evaluation

The objective of the modeling capacity tests was to evaluate the expressiveness of MSSN-Onto
and our framework in defining and retrieving complex events. To do so, we implemented the
event detection and retrieval function for the AMI Smart Meeting application by using our
ontology and framework. Due to the lack of the smart meeting room infrastructure, we chosed
to develop our prototype by using multimedia data from a prerecorded AMI corpus. The details
of the corpus, our prototype, and experiments are given as follows.

4.4.2.1 Introduction to the AMI Corpus

The AMI corpus is a multimedia data corpus that is recorded from the AMI Smart Meeting Room

application. The complete AMI corpus
12

 contains 100 hours of meeting recordings. The AMI
corpus data is separated into multiple directories, where each directory contains data from one
meeting session. The data within each category is furthered organized into multiple directories
according to sensor types. They are described in Table 4.2.

Table 4.2 – AMI Corpus Directory Structure for a Meeting Session

Directory Name Related Sensor(s) Data Type(s) and

Encoding Format(s)

video
- Video Cameras

- Video (MPEG4/AVI)

- Webcams

audio
- Headset

- Audio (WAV)

- Microphone Array

 - Image (JPG)

slides - Smart Projector - Text (Text File)

 - Timestamp (Text File)

 - Video (MPEG4/AVI)

pens - Smart Whiteboard - Image (JPG)

 - Penstroke (XML)

4.4.2.2 Prototype Architecture

In order to exploit our approach in the AMI corpus, we modeled the AMI smart meeting room as an
application domain ontology and aligned it with MSSN-Onto. This is already described in the
previous section and given in Figure 4.11. We developed a prototype for processing the AMI
Corpus according to the aligned ontology and MSSN-Onto based framework. The prototype can be

found online
13

. The architecture of our prototype can be seen in Figure 4.14.

Briefly, the MSSN-Indexer module takes the sensor data from the AMI corpus directly. It uses

GStreamer
14

, OpenCV
15

, and Essentia
16

 libraries for decoding and extracting low-level multimedia

12 http://groups.inf.ed.ac.uk/ami/download/

13 http://mssn.sigappfr.org/demo

14 https://gstreamer.freedesktop.org/

15 http://opencv.org/

16 http://essentia.upf.edu/

46 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

MSSN Indexer Application Domain

Event Processing Engine

 Manager

 AMI Onto

Decoder

 Event Query

(SPARQL

 (Gstreamer)

AMI Corpus

Endpoint)

 MSSN-Onto

SPARQL

 OWL AMI/MSSN-Onto

Feature Extractor Engine

 Serializer Repository

(OpenCV/Essentia)

 (Fuseki-TDB)
User

Figure 4.14 – The architecture of our prototype

features. The low-level features are indexed and stored within the repository kept by the
Application Domain Manager. The AMI ontology aligned with MSSN-Onto (see Figure 4.11) is

also stored in this repository. We used Apache Jena Fuseki TDB
17

 to implement this
repository, since it is well recognized for its performance and scalability. For detecting events,
the user submits the query in SPARQL language, the SPARQL engine queries the Fuseki
TDB to identify the events and then communicates the result to the user.

It is to be noted that we cannot use a traditional relational database for implementing the repository.
The usage of the ontology based approach as we propose imply that all the data are modeled by using

RDF
18

. Unlike a traditional database, the RDF stores data as a set of triples:hsubject, predicate,
objecti, where subject and object are instances generated from concepts within an ontology, and
predicate is a relation between subject and object as defined within an ontology. In this case, it is
obligatory to use a triplestore software (e.g., Fuseki) for implementing the repository.

We selected ten events from the AMI scenario and defined them using the concerned descriptors
according to MSSN-Onto, as shown in Table 4.3. They were selected because they represent complex
events resulting from the aggregation of multiple sensor devices and multiple sensor readings to be
detected. Additionally, these events reflect the typical flow of events that can happen from the start to the
end of a meeting session. The details of each query can be found on the website of the prototype. It is to
note that the online version does not allow users to write new queries but only execute predefined ones.

4.4.2.3 Evaluation Measures

To validate the modeling capacity of our MSSN-Onto, we used the following Detection Accuracy metrics:

• Precision is a metric between 0 and 1 used for measuring the relevancy of the results (detected
events). The higher the precision is, the more relevant the results are. It is calculated as
the number of True Positives (TP)

19
 over the number of True Positives (TP) and False

Positives (FP)
20

 (see Eq. 4.1).

Precision =

T P

(4.1)

T P + FP

• Recall is a metric between 0 and 1 used for measuring the correct relevant results. It is calculated as the

number of True Positives (TP) over the number of True Positives (TP) and False Negatives (FN)

17 https://jena.apache.org/documentation/fuseki2/

18 https://www.w3.org/RDF/

19 True positives, in event detection, is the number of events which the system can correctly detect.

20 False positives, in event detection, is the number of events which the system is falsely detected.

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 47

 Table 4.3 – List of events and their description

Event Event Description Concerned Sensor Concerned Media

Name
 Descriptor

Beginning of The beginning of a meeting where Smart Projector, mssn:TextAnnotationDescriptor,

a slide is loaded on the screen and

a meeting session Microphone Array
 mssn:MediaTimePointDescriptor

a participant starts speaking

Presenting A participant introduces the meeting’s Headset mssn:MediaTimePointDescriptor

the meeting’s agenda agenda
 mssn:MediaDurationDescriptor

Presenting a topic A participant presents his/her work
Microphone Array, mssn:MediaTimePointDescriptor

Headset mssn:MediaDurationDescriptor

 A participant uses the active board to
 mssn:MediaTimePointDescriptor

 Whiteboard, mssn:MediaDurationDescriptor

Using the active board illustrate some ideas while presenting

Headset mssn:PointDescriptor

 his/her work

 mssn:ColorDescriptor

Changing slides
A point in time where a slide Smart Projector mssn:MediaTimePointDescriptor

is changed
 mssn:MediaDurationDescriptor

Changing Changing to a new presentation
Microphone Array, mssn:MediaTimePointDescriptor

to another presentation Headset mssn:MediaDurationDescriptor

 Several participants discuss with each Smart Projector, mssn:MediaTimePointDescriptor

Brainstorming other on a topic while remaining on the Microphone Array,

 mssn:MediaDurationDescriptor

 same slide Headset

Participant A point in time where a participant mssn:MediaTimePointDescriptor

Webcam
 mssn:MediaDurationDescriptor

leaving their seats leaves his/her seat

 mssn:FaceRecognitionDescriptor

Summarizing A participant summarizes all the points Microphone Array, mssn:MediaTimePointDescriptor

 mssn:MediaDurationDescriptor

the meeting discussed within the meeting Headset

 mssn:TextAnnotationDescriptor

Leaving All the participants leave the room
Microphone Array, mssn:MediaTimePointDescriptor

the room Headset mssn:MediaDurationDescriptor

21 (see Eq. 4.2). The higher the Recall is, the more completeness of the results are.

Precision =

T P

(4.2)

T P + FN

• F-Measure is a harmonic mean between 0 and 1 based on the precision and recall. The
higher the F-Measure is, the more accurate the detection is. It reflects the overall quality
of the results. It is computed as follows:

F-Measure = 2 × Precision ×Recall (4.3)

Precision + Recall

4.4.2.4 Results

We conducted our experiments by randomly picking up four meeting sessions from the AMI corpus and
indexing them offline. The querying processing is done online through the web interface of our prototype.
To determine the ground truth of T P, FP, and FN , we first detected events through human observation.
Then, we compared the result of each query with the human result. The number of occurrences of
Presenting a topic and Brainstorming events is counted according to the time window during which those

events were actually occurring. The other events (e.g., The meeting is started, The slide is changed, The
presenter has changed) have occurred only at a certain point in time. Hence, the occurrences have been

counted according to the number of times each event is detected within the data.

21 False Negatives, in event detection, is the number of events which the system supposes to detect but fails to detect.

48 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

 Table 4.4 – Event Detection Accuracy Result

 Event TP FP FN Precision Recall F-Measure

 Beginning of
2 2 2 0.50 0.50 0.50

 a meeting session

 Presenting the
3 1 1 0.75 0.75 0.75

 meeting agenda

 Presenting a topic 1312 538 699 0.71 0.65 0.68

Using the active board 11 3 1 0.79 0.92 0.85

 Changing slides 17 0 0 1.00 1.00 1.00

 Changing to another 1 2 6 0.33 0.14 0.20

 presentation

 Brainstorming 1868 214 1260 0.90 0.60 0.72

 Participants leaving
1 12 17 0.08 0.06 0.07

 their seats

 Summarizing
2 2 2 0.50 0.50 0.50

 the meeting

 Leaving the room 4 0 0 1.00 1.00 1.00

The results presented in Table 4.4 show that our MSSN-Onto based prototype can detect events from AMI

corpus data with moderate accuracy despite using untune commercial on-the-shelf multimedia processing
functions. Significant results are in the detection accuracy of Brainstorming and Using the active board events.

They are both complex events for whose detection requires sensing from several sensors. The results show a
F-Measure=0.72 for Brainstorming and F-Measure=0.85 for Using the active board events, which means highly

accurate detection. Changing slides and Leaving the room events have perfect detection accuracy. This is

because the smart projector sensor helps provide accurately when the slide is changed. We can also combine

this information with the audio sensor information to accurately detect when all the participants leave the room.
The Participants leaving their seats event has the lowest detection result, due to the usage (and not tuning) of the

on-the-shelf visual feature recognition method of OpenCV.

This is also the case of Beginning of Meeting Session, Change to Another Presentation, and Summarizing
the Meeting events, which are underperformed due to the default parameters used in the adopted
voice activity detection and phrase segmentation methods of OpenCV. Note that the
underperformed results are not caused by MSSN-Onto since it is related to the fact that we did not
tune the multimedia feature extraction and recognition functions implemented in our prototype. Of
course, this can be improved by tuning properly the existing methods or adopting others.

4.4.2.5 Discussion

In this section, we showed how we evaluated and demonstrated the event modeling capacity of our
approach (the MSSN-Onto and the framework). The result shows that we can develop a system for
defining and detecting complex events from AMI corpus successfully with an acceptable accuracy.
We will expand our evaluation into more application domain in our future work.

It is noted that the development of the complete framework is still our on-going work.
Hence, some parts of the prototype that are used for the experiment are hard-coded to the
AMI smart meeting room application.

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 49

It is also noted that the event detection accuracy result as we show may not be directly relevant to
the modeling capacity evaluation. However, the accuracy result allow us to demonstrate the capability of
our ontology and framework on overcoming the syntactic and semantic interoperability requirements in
MSNs. By adopting our approach, we can interoperate information within MSNs better. Hence, it allow
us to detect events with a moderate accuracy despite the fact that we use an inaccurate multimedia
feature extraction and recognition functions when conducting the experiment.

4.4.3 Retrieval Performance Evaluation

The framework that we proposed for processing complex events is an ontological based framework. Such a

choice imposes questions and challenges on the performance issue whether it is capable to be used in real-

time or near real-time processing or not due to its considerably high data overhead nature [57]. Hence, we

conducted experiments to verify the feasibility of our approach for the completeness of our study.

To evaluate the retrieval performance when detecting complex events by using our
framework, we used two data sets:

• AMI corpus: to measure the data access time on a real dataset; and

• Simulated corpus: to measure the overhead of the store space (i.e., size of the data
represented with MSSN-Onto) and the performance of the query process in a high
workload (large amount of sensors and multimedia data) scenario.

We detail each test below in following sub-sections. It is to be noted that every query that
we ran within the experiments were executed after all the data were properly indexed using
our ontology. The queries were not executed during the run-time (i.e., continuously executing
each query against an incoming sensor data stream) due to the fact that we are using a
prerecorded data corpus. This will be done in our future study.

4.4.3.1 Evaluation in AMI Corpus

To evaluate the retrieval performance when detecting complex events, we measured the time that our online

prototype engine
22

 takes to access the data from the Fuseki TDB repository (in which sensor and multimedia

data descriptions are stored) without considering the parsing time (i.e., the time it takes to parse the MSSN-Onto
data repository into the memory). To avoid the overhead on the HTTP transmission of our web-based
prototype, we created a standalone version to conduct this performance experiment offline. All the components
of the online prototype as previously described are kept the same in the standalone version as described in
Figure 4.14. The machine that we used to conduct the test has Linux Mint 17 operating system, Intel Core 7
Quad Core 2.4 GHz CPU and 8 GBytes of RAM, on which we also installed the Fuseki repository and the

SPARQL engine EasyRDF
23

. The overall size of the ABox (number of triples) is 163,531 triples. The ABox

size of each query is given in Table 4.5. We performed each query five times and reported in milliseconds its
average time over all the executions. It is noted that the total ABox size is not equal to the sum of ABox size for
each query because these queries do not represent the whole information or events that can be found. The
total ABox size contains our selected events, events that we do not select, sensor infrastructure information,
and application domain information.

The experiment results, presented in Figure 4.15, show that the query that takes the longest time is the

one related to Using the active board event, which is 1,447 ms. In fact, this query is the most complicated one to

be executed, as it requires detecting a sequence related to a point in time where a presenter grabs a pen right

before a Presenting event. We also observed that three complex events can be identified faster

22 http://mssn.sigappfr.org/demo

23 http://www.easyrdf.org/

50 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

 Table 4.5 – ABox Size for each query in AMI Corpus experiment

 Event ABox Size Total ABox Size

 Beginning of 4

 a meeting session

 Presenting the 4

 meeting agenda

 Presenting a topic 10

 Using the active board 14 163,531

 Changing Slides 47

 Changing to another 10

 presentation

 Participants leaving 28

 their seats

 Brainstorming 13

 Summarizing the meeting 4

 Leaving the room 4

than the others: Beginning of a meeting session, Leaving the room, and Change to another presentation events,
taking approximately 0.04 - 0.05 ms. This is related to the fact that their detection is easier since they
require data only from the same type of sensors (in this case, multiple audio sensor readings).

Figure 4.15 – Event Querying Performance Result

4.4.3.2 Evaluation using simulated data

In order to evaluate the performance on a bigger network, we performed other sets, by means of simulations,

with high workloads (i.e., MSNs that contain large amount of sensors and multimedia data). To do so, we

simulated MSNs with video camera sensors (considered as the most expensive ones in terms of processing

and storage). We varied the number of sensors from 10 to 500 and the number of collected data, and more

4.4. Validation: Application of the MSSN-Onto in a real-world scenario 51

precisely media descriptors, from 60 to 3600. All camera sensors in the MSNs are supposed to capture video
data at the same time (in order to take the worst case scenario). The length of the video that each sensor

captures is one hour. We generated the mssn:MultimediaData, mssn:MediaSegment, and

mssn:MediaDescriptor directly by using mock up video data. The mock up video data contains

programmatically generated video frames. Every generated video data is decomposed and indexed with

respect to the temporal information. Thus, the mssn:TemporalDecompositionSegment is used when

decomposing the video data into multiple segments. Each segment contains five media descriptors (time point
descriptor, duration descriptor, text annotation descriptor, color structure descriptor, and face recognition
descriptor), where each descriptor has always a fixed size. The simulation varies the number of total media
descriptors by varying the duration of media segments. The simulation steps are given below.

1. Simulate 10 video camera sensors, each one producing a video data of 1 hour long;

2. Index and map every produced video with MSSN-Onto, and decompose the video contents into multi-ple

temporal segments of 300 seconds long each, all of them also represented with MSSN-Onto. Each

segment is attached to the 5 aforementioned media descriptors. This produces 3600sec/300sec =

12 media segments, which in turn produces 12x5 = 60 media descriptors per each one hour video;

3. Measure the size of the file that is serialized after indexing the simulated sensors with
MSSN-Onto and record the result in megabytes unit;

4. Import the serialized file into Fuseki triple-store;

5. Launch a SPARQL query for Retrieving a media segment that contains a video frame at the 30

minutes position of the recorded video to the Fuseki TDB repository. Record the time that
the query needs to identify such event, in millisecond unit;

6. Redo the steps 2 to 4 by varying the segment size from 300 seconds to 60, 40, 20, and 5

seconds. This produces 60, 90, 180, and 720 media segments which also means 300,
450, 900, and 3600 media descriptors per one hour video, respectively;

7. Redo the steps 1 to 5 by varying the number of simulated sensors from 10 to 50, 100,

200, and 500 sensors.

Overhead Size Evaluation: The size of the generated MSSN-Onto data (i.e., sensors and
multimedia data descriptions) from each simulation is given in Table 4.6.

Table 4.6 – Overhead size (in MBytes) according to the number of sensors and number of media descriptors

Number of Sensors
Number of Media Descriptors

60 300 450 900 3600

10 0.26 1.4 1.68 3.34 13.26

50 1.13 6.21 9.23 18.27 72.53

100 2.82 9.23 18.66 36.94 146.64

200 5.69 18.27 37.64 74.5 295.66

500 14.29 72.54 94.55 187.15 742.75

Note that as expected, the overhead size of the MSSN-Onto data depends on the number of media
descriptors that are used. This overhead is huge when the division of the media segment are as small as
5 seconds per slice, in which case 3600 media descriptors per video are produced. In Figure 4.16, the
data reported in Table 4.6 is also shown, to illustrate the effect of varying the number of sensors on the

52 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

Figure 4.16 – Overhead size of MSSN-Onto from the simulation

overhead size. These results show that the relation between these two variables tends to be
linear, which reflects a slow overhead size growth rate.

Stress Performance Evaluation: The metric used for measuring the query performance is also
the query execution speed. We ran a query to look for one triple within all the triples that are
recorded. The number of triples (ABox size) for each experiment is given in Table 4.7.

Table 4.7 – ABox Size for each experiment according to number of sensors and numbers of
media descriptors

Number of Sensors
 Number of Media Descriptors

60 300 450 900 3600

10 2,116 6,460 14,050 27,820 110,440

50 11,516 51,500 76,490 151,460 601,280

100 23,266 104,050 154,540 306,010 1,214,830

200 46,766 209,150 310,640 615,110 2,441,930

500 117,226 524,450 778,940 1,542,410 6,123,230

We plot the experiment results in an XY chart where X-Axis gives the number of sensors and Y-
Axis gives the query execution speed in millisecond unit. The result can be seen in Figure 4.17.

The relation between the number of sensors and query execution speed, according to Figure
4.17, tends to be linear. The longest query speed is of 31.66 seconds from the simulation of 500
sensors with 5 seconds media segment slice size. This ought to be acceptable as the overhead
size of this case is 742.75 megabytes (6,123,230 triples). The query speed of the other case is
ranging between less than 1 second to 12 seconds. This suggests that our MSSN-Onto is usable in
a near-real time event detection case where the event detection is delayed for up to 1-2 minutes.

To sum up, we can confirm, thanks to these results, that MSSN-Onto can effectively model MSNs and

related multimedia data in order to detect complex events. The event detection queries return positive results in

most cases, except for the cases in which some multimedia pre-processing and tuning is required.

4.5. Conclusion 53

Figure 4.17 – Query execution speed results

Additionally, with this work we demonstrated the possibility of building an efficient query
engine for complex event detection, based on MSSN-Onto representation even in scenarios
with huge amount of data and big number of multimedia sensors.

4.5 Conclusion

In this chapter, we introduce an ontology for modeling multimedia sensor networks so-called the
MSSN-Onto. The MSSN-Onto helps to (i) fully model multimedia sensor networks; (ii) provide
syntactic interoperability; and (iii) provide semantic interoperability among all the data gathered
within multimedia sensor networks. The MSSN-Onto is a generic ontology for multimedia sensor
networks. Hence, we can use it in any application domain. We also conducted experiments and
validations to confirm the suitability of the MSSN-Onto. The result suggests that MSSN-Onto is
suitable to be used as a generic ontology for modeling multimedia sensor networks.

The MSSN-Onto is used by the Repository module of our framework. The Ontology Handler
module helps to translate users’ requests and all gathered sensor readings into the MSSN-Onto
model. Users’ requests are written in CEMiD language. The language is described in Chapter 5.
The internal mechanism on how the framework used the MSSN-Onto is given later in Chapter 6.

54 CHAPTER 4. MSSN-Onto: An Ontology for Modeling Multimedia Sensor Networks

Chapter 5

Complex Event Modeling and
Detection (CEMiD) Language

Recall from Figure 3.1, CEMiD Interpreter is one of the core components of the framework. This component

helps users to model sensor network infrastructure, modeling events that users would like to detect, and

indicate actions and reports that the system needs to conduct when a certain event is detected. Users can

model all the models by using CEMiD language, a high-level language what we propose for users to interact

with the framework. The CEMiD language can also be serialized in JSON format in the case that users or

developers prefer a JSON-based syntax for using in a web service-like environment.

The syntax style of CEMiD language is based on SQL/SPARL and ECA languages. This
chapter begins with the description of the language syntax for each of the language functionalities.
This follows by a dedicated section for describing a serialization of the CEMiD language in JSON-
based syntax. The section after describes how the CEMiD language is processed by the
framework. This chapter ends with the validation of the capacity of the language.

5.1 CEMiD Language

Functionalities of the CEMiD languages are: (i) Multimedia Sensor Network Infrastructure
Modeling, (ii) Event Modeling, (iii) Action Definition, and (iv) Historical Data Querying.
Syntaxes for each functionality are described in sub-sections as follows.

5.1.1 Multimedia Sensor Network Infrastructure Modeling

Recall from Chapter 4, data which has to be modeled for modeling multimedia sensor network infrastructure

are a location map, and sensor infrastructure. Syntaxes for modeling them are given as follows.

5.1.1.1 Location Map Modeling

CEMiD language syntax for modeling a location map is based on the SQL/SPARQL style
languages. All the statements for modeling a location map are proposed in response to Def. 1 and
2 in Chapter 4. The list of CEMiD commands for modeling a location map is given as follows.

55

56 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

Map creation/deletion

CREATE MAP <map_IRI>;

DELETE MAP <map_IRI>;

These statements are used for creating an empty location map or deleting an already defined map.

Location insertion/deletion

INSERT LOCATION <location_IRI> TO <map_IRI> [VALUE
<pos_value>]; DELETE LOCATION <location_IRI> FROM <map_IRI>;

These statements are used for adding or removing a location to/from the map. An IRI of a location is
used as an identifier to the location. VALUE is an optional parameter for indicating a value that is
associated with the location (see Def. 1). A location map is also considered as a location within the
framework. Hence, we can also add an already defined location map into another location map.

Insert/delete location relation

INSERT RELATION TO <map_IRI> {

<location_IRI>,<relation_IRI>,<location_IRI> .

<location_IRI>,<relation_IRI>,<location_IRI> .

....}

DELETE RELATION FROM <location_map_IRI> {
<location_IRI>,<relation_IRI>,<location_IRI> .
<location_IRI>,<relation_IRI>,<location_IRI> .

....}

These statements are used for adding or removing relations between a pair of location within the
map. A relation is described in a triple format of <source, relation, destination>, where
source and destination are location IRIs and relation is an IRI of a location relation type.

The predefined location relation types in the CEMiD framework were presented in the previous chapter

(see Section 4.2.1). Users can also freely propose a new kind of location relation in the case that they would

like to propose an application specific location relation. To do so, users need to use the following statement.

Create/remove relation

CREATE RELATION <relation_IRI>

TYPE <relation_type_IRI>

[VALUE <value>];

DELETE RELATION <relation_IRI>;
<relation_type> = ’TOP’ | ’DIS’ | ’DIR’

Recall from 4.2.1, location relation can be either topological, distance, or directional. TOP variable is
used as <relation_type_IRI> within the statement for indicating that a new relation type to be created is a
topological relation. DIS is used for creating a new distance relation, and DIR is used for creating a new
directional relation. The VALUE <value> is optional. It is required only if a relation to be created is a
distance relation because the distance may required to be quantified numerically in some application
(e.g., location A is 10 kilometres far from location B). A new location relation proposed by this statement
is modeled as a sub-class pf mssn:LocationRelation concept of MSSN-Onto (see Figure 4.1.

We illustrate the use of the CEMiD language to create a location map in the following example.

5.1. CEMiD Language 57

PREFIX <office:http://cemid.sigappfr.org/office#>

PREFIX <relation:http://cemid.sigappfr.org/rel#>

PREFIX <relation:http://cemid.sigappfr.org/rel_office#>

CREATE MAP office:mapRoom1;

INSERT LOCATION office:table1 TO office:mapRoom1;

INSERT LOCATION office:table2 TO office:mapRoom1;

INSERT LOCATION office:table3 TO office:mapRoom1;

CREATE RELATION rel_office:nextTo TYPE DIS;

INSERT RELATION TO office:mapRoom1 { office:table1,
rel:opposite, office:table2 . office:table2,
rel:opposite, office:table3 . office:table3,
rel_office:nextTo, office:table1 .

};

PREFIX commands can be used in the same manner of the SPARQL language such that, an IRI can
be specified through the short hand namespace-prefixed form. We first create an empty location map
(with IRI as http://cemid.sigappfr.org/office#mapRoom1) with the statement CREATE MAP.
Next, locations office:table1, office:table2, and office:table3 are created and added to the
map office:mapRoom1. We create a new distance relation, designated as rel_office:nextTo, with
the CREATE RELATION statement. The relation type rel:opposite is one of the pre-defined location
relations provided by our framework. The relation between each pair of locations are defined by INSERT
RELATION TO statement. Hence, we have the location map office:mapRoom1, with three locations
related by distance and directional relations. A user can insert office:mapRoom1 in other location map,
let us say office:building1, with the statement INSERT LOCATION office:ma-pRoom1 TO
office:building1.

Beside the user defined relations as indicated within the statement INSERT RELATION TO, the
framework automatically adds the topological relation rel:contains between a location map and
every location within the map. In the example presented above, the framework automatically creates

relations <office:mapRoom1, rel:contains, office:table1>,
<office:mapRoom1, rel:contains, office:table2>, and <office:mapRoom1,
rel:contains, office-:table3>.

5.1.1.2 Sensor Network Infrastructure Modeling

After a location map is modeled properly, users can define a sensor network by using CEMiD
language statements as follows.

Create/Remove a sensor network

CREATE NETWORK <sensor_network_IRI>;

DELETE NETWORK <sensor_network_IRI>;

These statements are used for creating an empty sensor network or deleting an existing
sensor network. This command creates/removes an ABox instance of ssn:System within the
MSSN-Onto repository (see Def. 4).

58 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

Create/Remove a sensor type

CREATE SENSOR TYPE <sensor_type_IRI>
MEDIA <media_type_list> METHOD
<sensing_method_IRI> FEATURE
<feature_of_interest_list>
STIMULUS <stimulus_IRI>

[CAPABILITIES { <capability>, <value> .

<capability>, <value> .

... }];

DELETE SENSOR TYPE <sensor_type_IRI>;

<media_type_list> = "video" | "audio" | "image"| "text"

| "numeric"

| <media_type_list>,<media_type_list>

Recall Def. 3, from Chapter 4, a sensor is modeled as a tuple which contains information regarding

(i) media type that it produces, (ii) installation location, (iii) sensing method that it uses, (iv), feature
of interest, (v) stimulus, (vi) a set of sensor capabilities and (vii) a set of coverage areas. It can be
seen that two of these pieces of information, an installation location and coverage areas, are
specific to a sensor instance, while the other informations (i.e., sensing method, feature of interest,
stimulus, capabilities, and coverage areas) are generic to every sensor of the same type. (e.g.,
every video camera within the network may have similar characteristics, but they can be deployed
in different location and have different coverage area). The framework takes the information which
are generic to every sensor of the same type from the statement as given above and model them
as a new TBox concept for modeling a multimedia sensor (i.e., generating a new concept for
modeling a multimedia sensor by inheriting from mssn:MediaSensor concept). The actual
instantiation (ABox instance) of each sensor can be done by using the statement as follows.

Insert/Remove a sensor to/from a network

INSERT SENSOR <sensor_IRI> TYPE <sensor_type_IRI> TO
<sensor_network_IRI> PLATFORM <location_IRI>
[COVERAGE_AREA <location_IRI_list>]

DELETE SENSOR <sensor_IRI> FROM <sensor_network_IRI> ;

These statements are used for adding or removing a sensor to/from a sensor network. The
statement creates (or remove) an ABox instance of a sensor according to an already sensor
type that is declared through the sensor type declaration statement.

The following example illustrates the usage of the CEMiD language for defining a new sensor network.

PREFIX <office:http://cemid.sigappfr.org/office#>

PREFIX <network:http://cemid.sigappfr.org/office/network#>
PREFIX <mssn:http://mssn.sigappfr.org/mssn#>

CREATE NETWORK network:room1_network FROM MAP office:mapRoom1;

CREATE SENSOR TYPE network:faceCamera

MEDIA "video" FEATURE "face"

CAPABILITIES { mssn:videoWidth, 1280 .

mssn:videoHeight, 720 .

mssn:encodingFormat, "h264" . }

5.1. CEMiD Language 59

CREATE SENSOR TYPE network:temp

MEDIA "numeric" FEATURE "Temperature Value"

CAPABILITIES { mssn:accuracy, 1.0 .

 mssn:drift, -100 .}

INSERT SENSOR network:camTable1 TYPE network:faceCamera

TO network:room1_network PLATFORM office:table1

COVERAGE_AREA office:table1;

INSERT SENSOR network:tempRoom1 TYPE network:temp
TO network:room1_network PLATFORM office:table1

COVERAGE_AREA office:table1, office:table2, office:table3;

We first create a sensor network with the IRI as office:room1_network, which use the previous

defined location map office:mapRoom1. Two types of sensors are declared: a video sensor, designated as

network:faceCamera, and a temperature sensor, called network:temp. The MEDIA statement is used for

declaring the type of output of each sensor. The network:faceCamera type sensor has "video" as the
MEDIA value, thus it becomes a multimedia sensor type; while for network:temp sensor type, the value

"numeric" is indicated for the MEDIA value, hence, it becomes a scalar sensor. Then, we create an instance
of each sensor, network:CamTable1 from network:faceCamera

and network:tempRoom1 from network:temp. Sensor network:CamTable1 is installed
in PLATFORM office:table1 and the coverage area is the same location. Sensor
network:temp-Room1 is also installed in PLATFORM office:table1, however its
coverage area is the three lo-cations defined in the location map office:mapRoom1 (i.e.,
office:table1, office:table2, and office:table3).

5.1.2 Event Modeling

SQL/SPARQL version of the CEMiD language contains two separated commands for
modeling an atomic event condition and an event statement. Their syntaxes are as follows.

Atomic Event Condition Modeling

CREATE COND <event_cond_IRI>

USING SENSOR <sensor_type_IRI | sensor_IRI>
FUNCTION <detection_function_IRI>
[PARAMS <additional_params>];

DELETE COND <event_cond_IRI>;

This statement is proposed in response to Def. 8 (see Chapter 4). The statement CREATE
COND is used for modeling an atomic event condition. In short, a user needs to define a new IRI to
a new atomic event condition. The USING clause is used for specifying which sensor or sensor
types are compatible with this condition, detection function has to be used, and additional
parameters (if any). The DELETE COND is used for deleting a condition from the framework. The
following example shows how atomic event conditions are described with CEMiD language.

PREFIX <cond_repo:http://cemid.sigappfr.org/event_repo#>

PREFIX <network:http://cemid.sigappfr.org/office/network#>

PREFIX <cond_func:http://cemid.sigappfr.org/func#>

CREATE COND cond_repo:high_temp

60 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

USING SENSOR network:temp

FUNCTION func:greater_than

PARAMS 35;

CREATE COND cond_repo:face_detect

USING SENSOR network:faceCamera

FUNCTION func:faceDetection;

Our example aboves contain two atomic event conditions. The first condition is for modeling an
atomic event condition for a high temperature event. The sensor used in this condition is a temperature
sensor indicated by the IRI network:temp (defined previously in the example of sensor network
modeling). The detection function used is func:greater_than. This function evaluates if the incoming scalar
value exceeds the threshold as given in the PARAMS clause. The second condition is an atomic event
condition for a face detected event. Its input is a video camera (also defined in the previous example) and
its detection function is func:faceDetection. The func:faceDetection function is a
preprogrammed function for detecting a face in an incoming video or image stream. This function does
not require any additional parameter. Hence, the PARAMS clause is not given.

After atomic event conditions are properly defined, complex events can be modeled as
CEMiD event statements. The syntax of a CEMiD event statement is given as follows.

Event Statement Modeling

CREATE EVENT <event_statement_IRI> STATEMENT

<spatio_temporal_condition> [FROM
NETWORK <sensor_network_IRI>] [FILTER
<filter_statements>]

<spatio_temporal_condition> =

SEQ (<operand>, <operand>, <t>) |

OVERLAPS (<operand>, <operand>) |

<spatial_opr>(<operand>, <operand>)

<operand> = <event_cond_IRI> | <event_statement_IRI> |
<location_IRI> | <spatio_temporal_condition>

<spatial_opr> = loc:at | loc:<relation_IRI>

<filter_statements> = <filter_statement> |

<filter_statement> <filt_opr> <filter_statement>

<filter_statement> = <f_operand> <f_opr>
<f_operand> <f_operand> = <operand>

| <operand.property>.<property>
| <datetime> #XSD-date
| <value> #Any alphanumeric value

<f_opr> = ’=’ | ’<=’ | ’>=’ | ’<’ | ’>’

’and’ | ’or’ | ’not’ | <spatial_opr>

<property> = ’time_begin’ | ’time_end’ | ’locations’ | ’values’

In short, an event statement consists of: (i) an IRI to be assigned to the statement; (ii) a spatiotemporal

condition for describing the event; (iii) an IRI of a sensor network to be applied to the statement; and (iv) a

5.1. CEMiD Language 61

filtering statement. The first two components of the statement are mandatory, while the latter
components are optional. An event statement is used by the framework for detecting events. Hence, the
output of an event statement is an event detection result. An occurrence of an event within a detection
result is called an event occurrence within the framework. An event occurrence has four main properties:

• time_begin: is a property for describing the timestamp of the beginning of an event occurrence

• time_end: is a property for describing the timestamp of the end of an event occurrence.
time_end = null if an event is still on-going

• locations: is a set of locations that are related to the event occurrence

• values: is the list of observation values that are related to the event occurrence.

A spatio-temporal condition of the CEMiD event statement is used for modeling a pattern of events in
term of relations between event occurrences. The language proposes two temporal operators and two
spatial operators. The temporal operators are SEQ, and OVERLAPS. The spatial operators are the

loc:at, and loc:relation_iri. Given that ec1 and ec2 are event occurrences which are produced
using conditions op1 and op2, all of SEQ, OVERLAPS, loc:at, and loc:(relation_iri) are defined as follows:

• SEQ operator describes sequential events, denoted as:
SEQ(op1,op2,t)={< ec11, ec21 >, ..., < ec1n, ec2n >} ↔ ec2i .time_begin − ec1i .time_end ≤ t

and ec1i is an event occurrence detected by op1, while ec2i is an event
occurre-nce detected by op2.;

• OVERLAPS operator is used for describing that two event occurrences happen during the

same period, denoted as OVERLAPS(op1, op2)={< ec11, ec21 >, .., < ec1n, ec2n >} ↔ (ec1i
.time_begin < ec2i .time_begin) ෺((ec2i .time_begin < ec1i .time_end) ෻(ec1i .time_end = null)), and ec1i is

an event occurrence detected by op1, while ec2i is an event occurrence detect-

ed by op2 ;

• loc:at operator is used for expressing that event occurrences happen at the same location,
denoted as, loc:relation_IRI(op1, op2) = {< ec11, ec21 >, .., < ec1n, ec2n >} ↔ (ec1i
.locations = ec2i .-locations) ;

• loc:relation_IRI) expresses the condition that event occurrences have locations related ac-

cording to the relation_IRI, which is a topological, directional, or distance relation, as given in a
predefined location map, denoted as; Given a location map LM =< iri, V , E, F > (Def. 2),
loc:<relation_IRI>(op1, op2)={< ec11, ec21 >, .., < ec1n, ec2n >} ↔ (ec1i .l = op1.l ෺ ec2i .l

= op2.l) ෺ ∃(ec1i .l, ec2i .l) ∈ E ෺ relation_I RI ∈ F(ec1i .l, ec2i .l), ec1i is an event occurrence

detected by op1, ec2i is either an event occurrence detected by op2 or a p-

redefined location IRI in LM.

Beside the spatio-temporal condition, the CEMiD event statement also allows users to specify the
filtering statement by using the FILTER clause, for filtering the result produced from STATEMENT clause
according to a user-defined condition. The filtering statement is designed based on the same principle of
the WHERE clause of SQL and the FILTER clause of SPARQL. The related operators that a user can use

for writing a filtering statement are ’=’, ’<=’, ’>=’, ’<’, ’>’, ’and’, ’or’, and ’not’. It is
noted that the FILTER clause does not appear as a seperate variable in Def. 9 in Chapter 4 as we
assume that the FILTER clause is also a part of an event statement thus, it should be integrated as a
part of the text describing the statement itself already.

An example of a CEMiD event statement is as follows.

62 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

PREFIX <cond_repo:http://cemid.sigappfr.org/event_repo#>
PREFIX <stm:http://cemid.sigappfr.org/stm#>

PREFIX <rel:http://cemid.sigappfr.org/rel#> PREFIX
<office:http://cemid.sigappfr.org/office#>

PREFIX <network:http://cemid.sigappfr.org/office/network#>

CREATE EVENT stm:people_feels_hot

STATEMENT

OVERLAPS((loc:at (cond_repo:face_detect,office:table1),
loc:at (cond_repo:high_temp, office:mapRoom1)))

FROM NETWORK network:room1_network;
FILTER (stm:people_feels_hot.time_begin

> 2017-05-30T09:00:00)

In this example, we define an event statement to detect if People feels hot. This event can be
described as an event where a camera sensor detects a face of a person (presumably a worker) in
table1 location, while a high-temperature event (cond:high_temp) is detected in the room described
by mapRoom1. The FROM NETWORK clause is used for specifying that the statement
stm:people_feels_hot will be applied only to sensors of the network network:room1_network.
Next, the CEMiD framework will filter the result according to the condition

stm:people_feels_hot.time_begin > 2017-05-30T09:00:00.

Thus, the final result of this event statement is a set of event occurrences according to stm:people_fe-

els_hot and the beginning timestamp of each of them is after 9:00 AM on 30th May 2017.

5.1.3 Action/Report Syntax

In the CEMiD framework, users can define which actuator(s) to trigger when a certain event is
detected. Users can also define how a detected event should be reported. The syntax of an
Action/Report statement of the CEMiD language is given as follows.

ON <event_statement_list> <action_statement>

<event_statement_list> = <event_statement_IRI> |
<event_statement_IRI>, <event_statement_list>

<action_statement> = ACTIVATE <actuator_IRI>

| REPORT <occurrence_properties> |

ACTIVATE <actuator_IRI> REPORT <occurrence_properties>

<occurrence_properties> =

<event_statement_IRI>.<property> |

<event_statement_IRI>.<property>,<occurrence_properties>

<property> = ’time_begin’ | ’time_end’ | ’locations’ | ’values’

The syntax as given above is inspired from an Event-Condition-Action style syntax. In short, the frame-
work will detect events according to event statements that are given in <event_statement_list>.
Whenever at least one of them is detected, the system will signal the activator as indicated by the

5.1. CEMiD Language 63

<actuator_IRI>. The system will also generate a report to the user according to
<occurrence_pro-perties> which can be either time_begin, time_end,
locations, or values. The usage of both ACTIVATE and REPORT are not obligatory.
However, users need to specify at least either ACTIVATE or REPORT in their statements.

The example of a near real-time event detection statement is given as follows.

PREFIX <stm:http://cemid.sigappfr.org/stm#>
PREFIX <act:http://cemid.sigappfr.org/act#>

ON stm:people_feels_hot ACTIVATE act:HVAC_room1
REPORT stm:people_feels_hot.time_begin,

stm:people_feels_hot.values;

The statement as given above is used for instructing the framework that it has to activate
the actuator with the IRI act:HVAC_room1 whenever an event occurrence according to a
statement stm:people_feels_hot is detected. The REPORT clause indicates that the
framework should report the beginning timestamp and a list of observation values of each
detected event occurrences to the user.

5.1.3.1 Historical Event Querying Syntax

As seen in Figure 3.1, every detected event occurrence is stored within the CEMiD repository for historical

event querying later on. The syntax of the CEMiD language for the historical event querying is as follows.

SELECT <event_statement_list>

[FROM <sensor_network_IRI>]

[WHERE <filter_statement>]

[REPORT <occurrence_properties>];

The syntax of the statement above is inspired from the SELECT.. FROM .. WHERE clause of the

SQL. The SELECT clause is used for selecting which event statements to be used for querying. The
FROM clause is to specify which sensor network that an event occurence should be queried from. The
parameter of FROM clause is an IRI to a specified sensor network (see Create/Remove a sensor network

statement). The filter statement is used for filtering only the output that is matched with a filtering

statement. The syntax of a filtering is similar to the filtering part of the CEMiD event statement definition.
The REPORT clause is used for selecting which properties of each event occurrence to report to a user.

This clause is optional. If it is not specified, the framework will report all properties of each event
occurrence. The example a historical event querying statement is given as follows.

PREFIX <stm:http://cemid.sigappfr.org/stm#>

PREFIX <network:http://cemid.sigappfr.org/office/network#>

SELECT stm:people_feels_hot

FROM network:room1_network

WHERE (stm:people_feels_hot.time_begin > 2017-05-
30T09:00:00) REPORT stm:people_feels_hot.time_begin,

stm:people_feels_hot.values;

The query above is used for selecting an already detected event occurrences from the CEMiD
repository that are detected by using a statement stm:people_feels_hot. The FROM and
WHERE clauses indicate that the event occurrences that are going to be reported have to be an
event occurrence which hap-pens in the sensor network network:room1_network and the
beginning timestamp of the occurrence has to be after 9:00 AM of 30th May 2017.

64 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

5.2 CEMiD Language: JSON Serialization

The syntax of the CEMiD language, as already described, is mostly inspired from SQL/SPARQL and
ECA style language. The language is designed to be expressive and intuitive to users. However, in

some use-case, users may need to serialize the language by using JSON
1

 such as, web-application

development use-case. JSON syntax may be less expressive and less intuitive when comparing with
SQL/SPARQL style syntax. However, it offers users more compactness of the syntax, and also allow the
ease of interoperating the data with external web-application. Therefore, we propose a template for
serializing the CEMiD language into JSON. They are described as follows.

{ //location map model
"location_map":{

"map_name":<location map name>,
"locations":[<location name>, ...,
<location_name>] "relations":[

{"source":<location name>,
"relation":<relation name>,
"destination":<location name>},

.....]},

//sensor network
model "network": {

"name": <network name>,

"map": <location map
name>, "sensors":[

{"sensor":<sensor name>
"type":<sensor type name>,
"location":<installation location>,

"output_format":[<output type>, ... <output
type>], "capabilities":{

<capability_name>:<value>,

..,

}

},]},

//events model

"atomic_event_conditions":[

{"cond_name": <atomic condition name>,

"sensors": [<list of sensors>],

"function": <IRI of a detection
function>, "params": [list of additional
parameters] },....],

"event_statements":[

{"name":<event statement name>,

"statement", <event statement>,

"actuator", <IRI of an actuator>},

...]}

1 JSON (http://www.json.org/) is an abbreviation of JavaScript Object Notation. JSON is a data model which is widely used in a web-

application development context.

5.2. CEMiD Language: JSON Serialization 65

The file above is a template that CEMiD framework uses for serializing CEMiD statements
into JSON. The template consists of three main sections: (i) location map model, (ii) sensor
network model, and (iii) event model. The example of the usage of using JSON-serialized
version of the CEMiD language is given as follows.

{ "location_map":{

"map_name": "Room204Campus1",

"locations":["table1", "table2", "table3"]

"relations":[

{"source":"table1", "relation":"opposite",
"destination":"table2"},

{"source":"table2", "relation":"nextTo",

"destination":"table3"}]},

"network": {

"name": "Room204Network", "map":
"Room204Campus1", "sensors":[

{"sensor":"cam1",

"type":"MediaSensor", "location":"table1",
"output_format":["video"],
"capabilities":{"width":640, "height":480,

"codec":"MPEG4"}},

{"sensor":"temp1",

"type":"Sensor", "location":"table2",
"output_format":["numeric"],
"capabilities":{"drift":-5, "precision": 1.0}

},]}

"atomic_event_conditions":[

{"cond_name": "face_detected", "sensors": ["cam1"],
"function":"opencv:haarcascade","params":"haar.xml"},
{"cond_name": "high_temp", "sensors": ["temp1"],
"function": "math:greater_than", "params": 30}],

"event_statements":[

{ "name":"people_feels_hot",
"statement":"OVERLAPS(face_detected, high_temp)"}
"actuator":"http://campus1.sigappfr.org/room1/hvac",
{ "name":room_becomes_hot",

"SEQ(face_detected, high_temp, 2)",

"actuator":"http://campus1.sigappfr.org/room1/hvac"

}]}

This JSON file example contains a location map, a sensor network, two atomic event
conditions, and two event statements. In short, a location map named Room204Campus1 is
created. Three locations table1, table2, and table3 are added to the map. The relations
among them are: table1 is opposite to table2, and table2 is nextTo table3. Two
sensors, cam1 and temp1 are created. cam1 is a video camera which produces an MPEG4
encoded video stream with video dimension of 640x480. temp1 is a temperature sensor which can
detect a temperature level with drift value of -5 and precision of 1.0.

Two atomic event conditions are defined in this example. The first condition is face_detected,

which takes inputs from cam1 sensor and pass to the HaarCascade function of the OpenCV library
2

. The

2 http://opencv.org/

66 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

opencv:HaarCascade is one of a built-in internal library in OpenCV for detecting a face of
a person according to pre-trained data file (indicated by "params":"haar.xml" in the
example) . The second atomic event condition is high_temp, which uses a built-in function
greater_than for determining if the sensor temp1 reads a value higher than 30. These two
atomic event conditions are used for modeling two event statements.

5.3 CEMiD Language Processing

The CEMiD language serves as the high-level interface for users to communicate with the framework.
The framework repository is an ontology-based repository which uses the MSSN-Onto as the core
ontology. This kind of repository can only work with a low-level language for manipulating ontology
repository such as the SPARQL. Hence, in order to be able to allow users to communicate with the
framework by using the CEMiD language, the framework needs to translate all the CEMiD language
statements into SPARQL statements to communicate with all the repositories within the framework.

In general, all the CEMiD statements that are related to location map modeling, sensor network
modeling and event modeling, are translated by the framework into an INSERT statement of the
SPARQL language. This allows the data to be added into the framework repository which is an
ontology-based repository. The template of the statement is given as follows.

PREFIX <rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <rdfs:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <schema:http://schema.org/>

PREFIX <ssn:http://www.w3.org/ns/ssn/> PREFIX
<sosa:http://www.w3.org/ns/sosa/> PREFIX
<mssn:http://mssn.sigappfr.org/mssn#>
<additional_prefixes>

INSERT { <predicates>

}

The template statement above is the template of the INSERT statement used by the framework.
All the prefixes that are common to all the SPARQL statements in general are added which are
rdf, rdfs, and schema. These prefixes are follows by the prefixes used by the CEMiD framework
which are ssn, sosa, and mssn. The additional prefixes that may be used by an application
domain are added to the <additional_prefixes> within the statement template.

All the CEMiD statements for modeling a location map, a sensor network, and an event are

translated into a SPARQL predicate format. The basic structure of a SPARQL predicate is as follows

<subject> <predicate> <object> .

The basic structure of SPARQL predicate consists of three sections which are subject, (ii) predi-
cate and (iii) object. The subject and object are instances of objects, classes, or resources to
be described. The predicate describes the relation between subject and object. Each line of
predicate is terminated by using . symbol. The example of SPARQL predicates are given as follows.

office:room1 rdf:type ssn:System .

office:room2 rdf:type ssn:System .

office:room1 rel:nextTo office:room2 .

5.3. CEMiD Language Processing 67

The example above gives three SPARQL predicates. The first two predicates use the
rdf:type predicate to describe that the resources office:room1 and office:room2 are
ssn:System type. The third predicate is used for describing that the office:room1 and
office:room2 are related according to the predicate rel:nextTo.

The following sub-sections describe how CEMiD statements for modeling a location map, a sensor

network infrastructure, and event can be translated and reconstructed into SPARQL predicates.

5.3.1 SPARQL predicates for modeling a location map

To construct the SPARQL predicates for modeling location maps from a CEMiD statement,
the CEMiD statements are parsed into three main pieces of information which are (i) a location
map identifier, (ii) list of locations within the map, and (iii) list of relations between locations.

Algorithm 1 Algorithm for generating location map predicates

1: function GEN_MAP_PREDICATES(map_I RI , Locations, Relations)
2: predicates = map_I RI + " rdf:type mssn:LocationMap ."
3: for each location in Locations do
4: predicates += location[I RI] + "rdf:type mssn:Location ."

5: for each relation in Relations do
6: src_IRI= relation[src]
7: rel_IRI= relation[rel]
8: dst_IRI= relation[dst]
9: predicates += src_IRI+" "+rel_IRI+" "+dst_IRI .

10: return predicates

The algorithm for constructing SPARQL predicates are given in Algorithm 1. The algorithm takes
three main parameters that has to be parsed from CEMiD statements. The first parameter is map_I RI
which is an IRI of a location map to be modeled. The second parameter is Locations which contains a set
of locations to be serialized into SPARQL. Each of Locations has IRI to the location to be modeled. The
final parameter is Relations which contains a set of location relations. Recall from location map mod-eling
statements, a relation is modeled as a triple of source, relation, destination. Hence,

relation[src], relation[rel] and relation[dst] refer to source, relation,
and destination components of a location relation triple. The algorithm is firstly generated a
new location map by creating a predicate <map_IRI> rdf:type mssn:LocationMap .. Next,
for each loca-tion, a predicate <location[IRI]> rdf:type mssn:Location . is created to
declare a new location. Finally, every location relations predicates are generated by the last for
loop. For example, given the CEMiD statement in JSON serialized format as follows:

{ "location_map":{

"map_name": "Room204Campus1",

"locations":["table1", "table2", "table3"]

"relations":[

{"source":"table1", "relation":"opposite", "destination":"table2"},
{"source":"table2", "relation":"nextTo", "destination":"table3"}]},

the example statement is reconstructed into the SPARQL query as follows:

PREFIX <rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX <rdfs:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

68 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

PREFIX <schema:http://schema.org/>

PREFIX <ssn:http://www.w3.org/ns/ssn/>

PREFIX <sosa:http://www.w3.org/ns/sosa/>

PREFIX <mssn:http://mssn.sigappfr.org/mssn#>

PREFIX <map:http://mssn.sigappfr.org/map#>

PREFIX <relation:http://mssn.sigappfr.org/mssn/relation#>

INSERT {

map:Room204Campus1 rdf:type mssn:LocationMap .

map:table1 rdf:type mssn:Location .

map:table2 rdf:type mssn:Location .

map:table3 rdf:type mssn:Location .

map:table1 relation:opposite mssn:table2 .

map:table2 relation:opposite mssn:table3 .

}

In short, the example query contains one location map named Room204Campus1 and three locations.

Hence, the INSERT statement creates the map, all the three locations, and predicates for describing
relations between locations as given in the CEMiD statement into the SPARQL predicate format.

5.3.2 SPARQL predicates for modeling sensor network infrastructure

To generate SPARQL predicates for generating a sensor network, the IRI to a sensor network
to be created and information of every sensor within the network are parsed from the CEMiD
statement and send into Algorithm 2.

Algorithm 2 Algorithm for generating sensor network infrastructure predicates

1: function GEN_SENSOR_PREDICATES(sn_I RI , Sensors)
2: predicates = sn_I RI + " rdf:type ssn:System ."
3: for each sensor in Sensor do
4: iri = sensor[I RI]; type = sensor[typeI RI]; = sensor[loc]
5: predicates += iri + " rdf:type " + type + " ."
6: predicates += iri + " sosa:onPlatform " + loc + " ."
7: predicates += sn_I RI + " ssn:hasSubSystem " + iri + " ."
8: for each cap in sensor[cap] do
9: capIRI = cap[I RI]

10: capValue = cap[value]
11: predicates += capIRI +" rdf:type ssn:Property ."
12: predicates += capIRI +" mssn:hasValue "+ capValue .
13: predicates += iri + " ssn:hasSystemCapability " + capIRI + " ."

14: return predicates

5.3. CEMiD Language Processing 69

Algorithm 2 utilizes a nested for loops to construct predicates for modeling a sensor network.

The algorithm takes a sensor network IRI (denoted as snI RI), and a set of sensors in the network
(de-noted as Sensors) as an input. It is to be noted that cap[IRI], and cap[value] are taken
from CAPABILITIES clause of the sensor creation statement. cap[IRI] is the identifier to a
capability to be modeled, and cap[value] is the value of the capability. (e.g, mssn:videoWidth
capability can have 640 as its value for modeling that the width of the video to be captured is 640
pixels.). First, the algorithm creates a new predicate <sn_IRI> rdf:type ssn:System .. Next,
for every sensor within Sensors, predicates for modeling its type, location, and capabilities are
generated. To illustrate the SPARQL predicate for modeling sensor infrastructure, given the CEMiD
statement in JSON serialization format as follows:

"network": {

"name": "Room204Network", "map":
"Room204Campus1", "sensors":[

{"sensor":"cam1",

"type":"MediaSensor", "location":"table1",
"output_format":["video"],
"capabilities":{"width":640, "height":480}},

"sensor":"cam2",

"type":"MediaSensor", "location":"table2",
"output_format":["video"],
"capabilities":{"width":640, "height":480}},

}

the example statement is reconstructed into the SPARQL query as follows:

PREFIX <rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <rdfs:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <schema:http://schema.org/>

PREFIX <ssn:http://www.w3.org/ns/ssn/>

PREFIX <sosa:http://www.w3.org/ns/sosa/>

PREFIX <mssn:http://mssn.sigappfr.org/mssn#>

PREFIX <map:http://mssn.sigappfr.org/map#>

PREFIX <network:http://mssn.sigappfr.org/network#>

PREFIX <app:http://mssn.sigappfr.org/app#>

INSERT {network:Room204Network rdf:type ssn:System .

app:Cam1 rdf:type mssn:VideoSensor .

app:Cam2 rdf:type mssn:VideoSensor .

app:Cam1 sosa:onPlatform mssn:VideoSensor .

app:Cam2 sosa:onPlatform mssn:VideoSensor .

network:Room204Network ssn:hasSubSystem app:Cam1 .

network:Room204Network ssn:hasSubSystem app:Cam2 .

app:capWidth640 rdf:type ssn:Property .

app:capWidth640 mssn:hasValue "640" .

app:capHeight480 rdf:type ssn:Property . .

app:capWidth480 mssn:hasValue "480" .

70 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

app:Cam1 ssn:hasSystemCapability app:capWidth640 .
app:Cam1 ssn:hasSystemCapability app:capWidth480 . }

The example query models a sensor network with two video cameras. The sensor network name,

sensor list, installation locations and capabilities are re-modeled into the SPARQL INSERT statement.

5.3.3 SPARQL predicates for modeling events

To generate SPARQL predicates for modeling events, all CEMiD statements for modeling
atomic event conditions and event statements are parsed and send to Algorithm 3.

Algorithm 3 Algorithm for generating event predicates

1: function GEN_EVENT_PREDICATES(AConds, Statements)
2: for each acond in AConds do
3: iri = acond[I RI]
4: sensor = acond[sensorI RI]]
5: func = acond[f uncI RI]
6: value = acond[f uncV alue]
7: predicates += iri + " rdf:type mssn:AtomicEventCondition . "
8: predicates += iri + " mssn:hasSensor " + sensor + " ."
9: predicates += iri + " mssn:hasFunction " + func + " ."

10: predicates += iri + " mssn:hasParameter " + value + " ."

11: for each stm in Statements do
12: iri = stm[I RI]
13: stm_text = stm[statement]
14: act = stm[actuator]
15: predicates += iri + " rdf:type mssn:EventStatement . "
16: predicates += iri + " mssn:hasEventStatement " + stm_text + " ."
17: predicates += iri + " mssn:hasActuator " + act + " ."

18: return predicates

Algorithm 3 takes two inputs: a set of atomic event conditions (denoted as ACond), and a set of
event statements (denoted as Statements). The first for loop is used for generating predicates for
modeling each atomic event condition acond within ACond. The second for loop is used for
generating predicates for modeling each event statement stm in Statements. To illustrate the
SPARQL predicate for modeling events, given the CEMiD statements for modeling atomic event
conditions and event statements, in JSON serialization format as follows:

"atomic_event_conditions":[

{"cond_name": "face_detected", "sensors": ["cam1"],
"function":"opencv:haarcascade","params":"haar.xml"},

{"cond_name": "body_detected", "sensors": ["cam2"],

"function": "opencv:haarcascade", "params": "haar_body.xml"}],

"event_statements":[

{ "name":"face_and_body",

"statement":"OVERLAPS(face_detected, body_detected)"}

"actuator":"http://campus1.sigappfr.org/room1/hvac",

}

5.4. Validation 71

the example statements can be reconstructed into SPARQL statement as follows:

PREFIX <rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <rdfs:http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX <schema:http://schema.org/>

PREFIX <ssn:http://www.w3.org/ns/ssn/>

PREFIX <sosa:http://www.w3.org/ns/sosa/>

PREFIX <mssn:http://mssn.sigappfr.org/mssn#>

PREFIX <map:http://mssn.sigappfr.org/map#>

PREFIX <relation:http://mssn.sigappfr.org/mssn/relation#>

PREFIX <event:http://mssn.sigappfr.org/mssn/event#>

PREFIX <app:http://mssn.sigappfr.org/app#>

INSERT {

event:face_detected rdf:type mssn:AtomicEventCondition .

event:face_detected mssn:hasSensor app:cam1.

event:face_detected mssn:hasParameter "haar.xml" .

event:face_detected mssn:hasFunction "opencv:HaarCascade" .

event:body_detected rdf:type mssn:AtomicEventCondition .

event:body_detected mssn:hasSensor app:cam2.

event:body_detected mssn:hasParameter "haar_body.xml" .

event:body_detected mssn:hasFunction "opencv:HaarCascade" .

event:face_and_body rdf:type mssn:EventStatement .

event:face_and_body mssn:hasEventStatement

"OVERLAPS (event:face_detected, event:body_detected)" .
event:face_and_body mssn:hasActuator

http://campus1.sigappfr.org/room1/hvac .

The example above depicts two atomic event conditions and an event statement which is
constructed from two camera sensors. Atomic event conditions that are modeled are face
detection event and full body detection event. The event statement is modeled to express the
case when one camera detects a face and another camera detect a full body at the same
time. It is noted that this example is for illustration purpose only. Hence, it is designed to be
concise and easy to read, but the event definitions may not reflect the actual use-case.

5.4 Validation

So far, we describe the CEMiD language and how the CEMiD framework translates CEMiD language

statements into SPARQL statements. It can be seen that the CEMiD language statements are considerably

shorter than using solely SPARQL statements. This means that using CEMiD language helps users to avoid

writing a long SPARQL statements. This section is dedicated to explaining the experiments done to measure

the difference in query sizes through CEMiD Language, JSON Serialization version of CEMiD, and using purely

SPARQL. These experiments verify the compactness of the CEMiD language. To do

72 CHAPTER 5. Complex Event Modeling and Detection (CEMiD) Language

so, we create a simulation script which generate all the queries in CEMiD language, their equals JSON
serialized, and pure SPARQL serialized query based on our pre-configured simulated scenario.

The simulated script generated statements in a sensor network application with 20 to 100 locations

within a location map, 20 to 100 video camera sensors within a network, 20 to 100 atomic events, and
20 to100 event statements, all of them incremented by 20 in each simulation step. The query size of
each version of the CEMiD language and pure SPARQL language is calculated to compare the
compactness level of the three versions. The query size is measured in terms of the number of no-space
literals within the statement (e.g., number of tokens in "INSERT INTO map:test2" is three tokens).

The experiment was conducted by simulating a network with 20 locations, 20 video camera
sensors, 20 atomic events and 20 event statements. Each of these parameters is increased at
the incremental of 20 until 100 of locations, video cameras, atomic events and event
statements are all simulated. The result is given in Table 5.1.

Table 5.1 – Query Size and Compactness Percentage

Number of Locations, Sensors,
 Query Size Compactness (%)

(Number of Tokens)

Atomic Event Conditions and

Pure CEMiD Language CEMiD JSON-CEMiD

Event Statements

SPARQL CEMiD JSON-CEMiD

20 1,578 772 493 51.08% 68.75%

40 3,138 1,512 973 51.82% 68.99%

60 4,698 2,252 1,453 52.06% 69.07%

80 6,258 2,992 1,933 52.19% 69.11%

100 7,818 3,732 2413 52.26% 69.13%

Results of calculating the query size of CEMiD language, JSON-CEMiD serialization version and,
using purely SPARQL language are shown in Table5.1. The compactness percentage of using CEMiD
language, comparing with using purely SPARQL, is approximately 52% in all cases. Adopting JSON
serialized version of the CEMiD language is furthered increase the compactness to approximately 69% in
all cases. This proves that the CEMiD language helps the users to greatly reduce the size of the
statements that they need to write for modeling data into the framework repository. The JSON-
serialization version of the language shows more compactness level than using actual CEMiD language
syntax. However, the expressivity and readibility of the JSON-serialization version are less than the
actual CEMiD language itself. Nevertheless, developers may choose to either use the full CEMiD
language or adopted only the JSON serialized version in favor of its compactness, but with the tradeoff
on limiting the functionality, expressivility and readliblity of the statement.

5.5 Conclusion

In this chapter, we introduce CEMiD language which is a language for modeling multimedia sensor
networks and events that users would like to detect. CEMiD language adopts SQL/SPARQL and
ECA style language syntax. By having CEMiD language, users do not need to interact with the
MSSN-Onto-based repository of our framework directly. Thus, the compactness of the query which
users need to write is approximately 52% comparing with using purely SPARQL. CEMiD language
also proposes a JSON serialized version which may have limited functionalities, but the syntax is
more concised. The JSON serialized version of CEMiD language helps to increase the
compactness of the query further to 69%. The latter part of our contribution is the complex event
processing engine which process and detect complex events which takes users’ queries provided
in CEMiD language (and also MSSN-Onto) as inputs. These are described in the following chapter.

Chapter 6

GST-CEMiD: Complex Event
Processing Engine Algorithms,
Implementation Details and Validation

So far, we have presented the overview architecture of the CEMiD framework and two of the three main
components of the framework (i.e., MSSN-Onto and CEMiD language). This chapter is dedicated to the
description of all the algorithms and implementation details that are needed for developing the complex
event processing engine and the full CEMiD framework. We first describe all the event detection
algorithms of the framework. Then, we explain how the CEMiD framework can be implemented in
practice. The core engine of the CEMiD framework for processing events is called the GST-CEMiD. This
chapter ends with the experimental validation of our framework in a Smart Office domain.

6.1 Algorithms for Processing Complex Events of the CEMiD
frame-work

The Complex Event Processing Engine is responsible for detecting events, as defined by the
users through the CEMiD language, from incoming sensor data streams. The detection
process happens automatically in response to every incoming sensor readings and according
to the location map, sensor network infrastructure, and event statements provided by users.
This section describes, through an illustrative example, the algorithm to detect events used by
the Complex Event Processing Engine. Figure 6.1 shows the example.

The engine keeps a queue for every atomic event condition presented in an event statement. In the
example of Figure 6.1, the event statement is OVERLAPS(OVERLAPS(face_detect, working),
high_temp), which comprises three atomic events: face_detect, working, and high_temp.
Hence, three queues are created. Next, another queue for storing complex events is also created in
response to each event operator. In the example in Figure 6.1, the system creates two queues. One is for
evaluating face_detect OVERLAPS working and the other one is for evaluating OVERLAPS
(OVERLAPS-(face_detect, working), high_temp). The algorithm for constructing queues for
evaluating an event statement can be written by using a recursive algorithm, as shown in Algorithm 4.

73

74 CHAPTER 6. GST-CEMiD

Annotated

Atomic Event Queue: face_detect Complex Event Processing Engine

Atomic Event

Sensor Data

 Condition: <on> <o1>

face_detect

Complex Event Queue:

Annotated

Atomic Event Queue: working
Operator

face_detect OVERLAPS working

Evaluation <on, pm> <oi, pj>

Sensor Data
Ato mic Event

<pn>

<p1>

Condition:

Complex Event Queue:

working

(face_detect OVERLAPS working)

Annotated

Atomic Event Queue: high_temp

 OVERLAPS high_temp)

Sensor Data Ato mic Event

<qn>

<q1>

Operator

 Condition: <ol, pm, qn > <oi, pj, qk >

high_temp

Evaluation

Result

 Process filtering

 CREATE EVENT stm:too_hot_working statement

 STATEMENT (cond_repo:face_detect OVERLAPS cond_repo:working)

OVERLAPS cond_repo:high_temp) and

 Event Structure
Inference

 FILTER cond_repo:high_temp > 2017-05-30T09:00:00 (via Allen temporal algebra)

Event statement

Event Definition
Repository

Event Occurrence

Repository

Figure 6.1 – Illustration: Event Detection Algorithm

The Algorithm 4 works by recursively binarizing the statement into the form of op1, opr, op2 (line
2), where op1 and op2 are operands and opr is an operator. The operands can be either an atomic
event condition or an event statement (lines 3 to 6). The function create_atomic_queue is used for
creating a queue for an atomic event condition operand (lines 4 and 9). The function
create_complex_queue is used for creating a complex event queue (line 12). On each of these
queues, it is stored the detection result for the corresponding atomic or complex event condition,
represented as an event occurrence. An event occurrence, according to Def. 10 (presented in Section
4.2.4 of Chapter 4), does not have any spatio-temporal property (i.e., timestamp, locations, values)
by default. This information is automatically extracted within the framework through the functions
get_time_start, get_time_end, get_locations, and get_values, which are built-in
functions only used by the framework (i.e., users do not needed to use them).

Algorithm 4 Algorithm for generating queues
1: procedure PROCESS_STATEMENT(event_statment)
2: op1, opr, op2 = binarized_statement (event_statement)
3: if is_atomic(op1) then
4: create_atomic_queue(op1)
5: else
6: process_statement(op1)

7: if opr , null then
8: if is_atomic(op2) then
9: create_atomic_queue(op2)

10: else
11: process_statement(op2)

12: create_complex_queue(op1, opr, op2)

6.1. Algorithms for Processing Complex Events of the CEMiD framework 75

Regarding the temporal event operators, our study chooses to adopt the operators as indicated
in Allen’s interval algebra [43]. However, unlike previous studies, we deem that not every Allen’s
interval algebra operator is suitable for a near real-time event detection. Thus, for near real-time
event detection in CEMiD framework, only the SEQ and OVERLAPS operators are considered.
Other Allen’s operators are used only in past event querying process.

Algorithm 5 and Algorithm 6 show the procedures that are executed to evaluate the SEQ and
OVER-LAPS operators, respectively. Given two event queues, P and Q, representing operands of
SEQ and OVERLAPS, an event occurrence is added to a resulting queue, R, if the corresponding
SEQ or OVER-LAPS conditions is met. Both algorithms work by spawning an infinite loop thread.
First, each algorithm waits for event occurrences to arrive in both queues, P and Q (lines 3 and 4 in
both algorithms). When at least one event occurrence arrives in each queue, their start and end
times are extracted (lines 5 to 9 in both algorithms). Then the SEQ and OVERLAPS operators
conditions are evaluated (lines 10 in Alg.5 and Alg. 6). If the condition is satisfied, both occurrences
are combined into a new occurrence, pushed to the result queue R, and dequeued from P and Q
(lines 11 to 17 in Alg.5 and Alg. 6). If the condition is not satisfied, the queue head with the lowest
timestamp (i.e., the oldest event occurrence) is dequeued from their queue.

Algorithm 5 SEQ Operator Algorithm

1: procedure SEQ(P, Q, t, R)
2: while true do
3: wait_f or_occurrence(P)
4: wait_f or_occurrence(Q)
5: p = P.head, q = Q.head

6: tp ← get_time_start(p)
7: tp

′
 ← get_time_end(p)

8: tq ← get_time_start(q)
9: tq

′
 ← get_time_end(q)

10: if (tp
′
 , null) ෺ (tq ≥ tp

′
) ෺ (tq −tp

′
 ≤ t) then

11: tkr =< p, SEQ, q, t >

12: push_to_queue(R, tkr)
13: dequeue(p), dequeue(q)
14: else if (tp ≤ tq) then

15: dequeue(p)
16: else
17: dequeue(q)

SEQ and OVERLAPS operators may be sufficient to be used in a near real-time event detection case.

However, they might not be sufficient for modeling complex events in a historical event querying case. In such

a case, according to Allen’s interval algebra, the SEQ and OVERLAPS operator can be replaced with other
operators that can describe event structure in a more precise manner if a certain condition is met. For example,

the A OVERLAPS B can be replaced with A EQUALS B if the duration of A and B are exactly equal. SEQ(A,

B, 2) can be replaced with A MEETS B if A finishes at the same time that B starts.
In CEMiD framework, right before an event is stored within the CEMiD repository, the

framework will try to determine whether the SEQ and OVERLAPS operators can be replaced with a
more precise temporal operator according to Allen’s interval algebra or not. The operators that are
considered to replace SEQ operator are MEETS, MET BY, FINISHED BY, and FINISHES. The
operators that are considered to replace OVERLAPS operator are CONTAINS, DURING, STARTS,
STARTED BY, and EQUALS. Hence, given these following variables:

CHAPTER 6. GST-CEMiD

1: procedure OV ERLAPS(P, Q, R)
2: while true do

3: wait_f or_occurrence(P)
4: wait_f or_occurrence(Q)
5: p = P.head, q = Q.head

6: tp ← get_time_start(p)
7: tp

′
 ← get_time_end(p)

8: tq ← get_time_start(q)
9: tq

′
 ← get_time_end(q)

10: if (tp ≤ tq) ෺ ((tq ≤ tp
′
) ෻ (tp

′
 = null)) then

11: tkr =< p, OV ERLAPS, q, null >

12: push_to_queue(R, tkr)
13: dequeue(p), dequeue(q)

14: else if (tp ≤ tq) then

15: dequeue(p)
16: else

17:

• ec1, ec2: are event occurrences;

• ec1.t = get_start_time(ec1);

• ec2.t = get_start_time(ec2);

• ec1.t
′
 = get_end_time(ec1);

• ec2.t
′
 = get_end_time(ec2);

are replaced with a more precise operator when conditions as given

Table 6.1 – Allen’s Interval Algebra Operators

Relation Condition

meets ec1.t
′
 = ec2.t

met by ec2.t
′
 = ec1.t

finished by ec1.t < ec2.t ෺ec1.t
′
 = ec2.t

′

finishes ec1.t > ec2.t ෺ec1.t
′
 = ec2.t

′

contains ec1.t < ec2.t ෺ec1.t
′
 > ec2.t

′

during ec1.t > ec2.t ෺ec1.t
′
 < ec2.t

′

starts ec1.t = ec2.t ෺ec1.t
′
 < ec2.t

′

started by ec1.t = ec2.t ෺ec1.t
′
 > ec2.t

′

equals ec1.t = ec2.t ෺ec1.t
′
 = ec2.t

′

Replacing SEQ and OVERLAPS with a more precise operator allows the framework to have more
precise knowledge of the structure of an event. Thus, the historical event query statements (see Chapter
5) of the CEMiD language can report the structure of an event with a more precised detail.

The operators between ec1 and ec2
in Table 6.1 are met.

 dequeue(q
)

 7
6

Algorithm 6 OVERLAPS Operator
Algorithm

6.2. GST-CEMiD: A Pipeline-Based Complex Event Processing Engine for CEMiD Framework 77

6.2 GST-CEMiD: A Pipeline-Based Complex Event Processing
En-gine for CEMiD Framework

As we showed in the previous section, event detection algorithms of the CEMiD framework are mostly based

on a pipeline-based processing technique in which all the raw sensor data stream are continuously fed into

processing queues of the framework, and also continuously sent to the event detection process queues. To

implement this kind of mechanism practically, the complex event processing engine of the framework is needed

to construct an event processing pipeline in response to each event statement provided by users. In CEMiD

framework, the engine for generating an event processing pipeline is called the GST-CEMiD. The pipeline

generated by the GST-CEMiD consists of three main interconnected components: Input Handling, Event

Detection, and Output Sink. They are depicted in Figure 6.2.

Pipeline Generator

gstreamer + gst-cemid

Actuators/reports/

Sensor information
Event model

 repository information
Pipeline

Input Handling Event Detection Output Sink

 Decoded Detected activates

 Media events

 Atomic Complex Actuators

Decoded Atomic Complex
Detected

 Atomic Complex SINK reports

SRC Event Event events

 Media Event Event SINK

SRC Decoders Event Event SINK

SRC Detection Detection Elements

Decoder Detection Detection Elements

Elements Decoders Detection

Elements Detection Elements
End User

Elements

Elements

Elements Elements

 Elements Elements
Detected

Decoded Elements Elements

 events stores

 Media

 Event Occurrence

 Repository

Figure 6.2 – The structure of an event processing pipeline

Details of each component in Figure 6.2 are given below:

• Input Handling: This component is responsible for receiving raw sensor data streams from sensors
and decoding them. Thus, this component is in turn divided into two sub-components: SRC

Elements and Decoders (see Figure 6.2). The raw sensor data reading is handled by the SRC

Elements, while the decoding task is handled by the Decoders. SRC Elements consist of multiple
sub-processes (one per sensor) for reading raw data stream. In general, one SRC element
process is created in response to one incoming input raw sensor data stream;

• Decoders: consist of multiple sub-processes for decoding raw data from sensors.

• Event Detection: It is responsible for processing atomic and complex events. One event

detection process is created in response to each atomic event condition and event
statement, as given in the predefined CEMiD language statements provided by users.

• Output Sink: This component is responsible for handling the output of the Event Detection

com-ponent. The output sink consists of multiple sub-processes where each process is
referred to as a SINK Element. A sink element takes an event detection result of an event
detection process and reacts according to a predefined behavior in the predefined
CEMiD language statements. Whenever an event is detected, a sink element can
activate an actuator, report the result to users, or store the detection result.

78 CHAPTER 6. GST-CEMiD

To demonstrate the feasibility of the implementation of our CEMiD framework, we develop

GST-CEMID relying on an extension of GStreamer
1
(a framework for processing multimedia

data in Linux-based operating systems), as a basis for generating the processing pipeline. We
extended the GStreamer to support sensor readings and event processing. Next sub-sections
describe the original elements of GStreamer framework and the newly proposed plugins.

6.2.1 GStreamer Framework

The GStreamer framework is a pipelining based framework that is used by every Linux-based operating
system for handling multimedia data. In short, a GStreamer pipeline consists of multiple sub-processes,
where each process is referred to as an element of the pipeline. The elements can be categorized into
three main groups: source elements, filter elements, and sink elements. Source elements are used for
handling the inputs of the pipeline. Examples of source elements include a filesrc element, for handling
inputs from files or a tcpclientsrc for handling inputs from a TCP-based protocol. Filter elements are a
group of elements that can be used for processing the multimedia data. More than 100 filter elements
are proposed in GStreamer. A notable filter element is the decodebin element, which can automatically
detect a type of an incoming multimedia data stream, picking an appropriate decoding algorithm, and
decode the data in one single element. Finally, Sink elements of the GStreamer are used for handling the
outputs of the filter elements. In general, sink elements of the framework can be used for either producing
an output to a file, displaying on screen (in case of a video or an image stream), or playing the output to
the system speakers (in case of an audio stream).

An example of a GStreamer pipeline for decoding an MP4 video file from a filename
test.mp4 and displaying the content on the screen, is given as follows.

filesrc location="test.mp4" ! decodebin ! xvimagesink

The elements in this pipeline are filesrc, decodebin, and xvimagesink. The filesrc
element denotes the input file test.mp4, into the pipeline. The decodebin element is
connected to the filesrc for detecting the multimedia type and decoding the content. The
xvimagesink is an element for displaying the result of the video decoding on screen.

The complex event processing engine of the CEMiD framework generates one GStreamer pipeline in

response to each atomic event condition and event statement as given by the users in CEMiD language.
However, the GStreamer framework does not contain any of the functionalities for handling sensor input
data stream, detecting an atomic event, detecting a complex event, or handling an event detection result.
Hence, we propose a new plugin for GStreamer framework, called gst-cemid, for proposing a set of new
elements with all the necessary functionalities for processing events in multimedia sensor networks. The
detail of the gst-cemid plugin is given in the following sub-section.

6.2.2 gst-cemid plugin

gst-cemid is a plugin for GStreamer framework to support the complex event modeling and
detecting fea-tures. Four new elements are proposed: cemidsensorsrc,
cemidatomiccond, cemidoperator, and cemideventsink:

• cemidsensorsrc: is used for handling an incoming raw sensor data stream. In general, one
cemidsensorsrc element is needed to be created in response to one sensor that is
defined within the user defined CEMiD statements . The cemidsensorsrc uses the HTTP
protocol for the communication between a sensor and a cemidsensorsrc element;

1 http://gstreamer.net/

6.2. GST-CEMiD: A Pipeline-Based Complex Event Processing Engine for CEMiD Framework 79

• cemidatomiccond: is used for detecting an atomic event. One cemidatomiccond is created
in response to one atomic event condition within the CEMiD statement provided by users;

• cemidoperator: is used for combining outputs from multiple atomic event conditions into a

complex event. One cemidoperator element is created in response to one event operator within
the CEMiD statements. This element can work as either an OVERLAPS or a SEQ operator;

• cemideventsink: is used for handling the output of the pipeline. It is capable of

reporting event detection results to a user, storing event detection results within an
event repository, and activating an actuator.

Our GST-CEMiD engine uses the gst-cemid plugin elements along with the elements of the
GStreamer framework to construct an appropriate event processing pipeline in response to an
event statement as given in the user-defined CEMiD language statement. This means that
one pipeline is generated in response to one event statement within the CEMiD language
statement. Figure 6.3 shows an example of a generated pipeline by our GST-CEMiD engine.

 SRC Decoders Event Detection Elements Output

Elements

 Elements Sink

annotated

raw video

 video Decoded

 stream

decodebin

 video data cemid

detectio

n

 stream cemid atomiccond result

sensorsrc

cemid
detection

detection

result
detection

raw process list result operator

 stream cemid annotated process list stream cemid cemid result cemidevent

raw

 sensorsrc atomiccond operator sink

detection result

 temperature

 data stream cemid annotated temperature data stream cemid

 sensorsrc atomiccond

Figure 6.3 – An example of a GST-CEMID processing pipeline

The example in Figure 6.3 depicts a pipeline for an event statement (face_detected OVERLAPS

working) OVERLAPS high_temperature. This reflects the Overpowered Heater event as given in
Table 1.2. This statement uses one video camera, one computer, and one temperature sensor as inputs. Three
cemidsensorsrc elements are created for handling the input stream from each of these sensors. A

decodebin element is also created and connected to the cemidsensorsrc element of the video camera
stream. The temperature sensor and the computer are considered as scalar sensors; thus their input streams
do not require any multimedia decoding. Next, three cemidatomiccond elements are created. One is
configured for detecting a face within a video stream. Another is configured for detecting whether a list of
processes on a computer contains at least one productivity application (e.g., Word, Powerpoint). The last one is
configured with a condition for detecting a high-temperature event. Two cemidoperator elements are created

for connecting cemidatomiccond elements according to the statement. In this case, GST-CEMID framework

connects the cemidatomiccond ele-ments of the the video camera and the computer to model

(face_detected OVERLAPS working). The result of this operator is connected to another

cemidoperator to model(face_detected OVERLAPS working) OVERLAPS high_temperature. The

final detection results are sent to the cemideventsink to report to the user and stored into the repository.

80 CHAPTER 6. GST-CEMiD

6.3 Experiments

Our framework is validated by means of experiments. The objective of our experiments was to validate
the performance of the framework whether it can support a near real-time event processing in
multimedia sensor networks, and a near real-time event processing under a high workload case (i.e., a
case with a large number of sensors). The metrics for validating the framework performance are (i)
detection latency and (ii)throughput. The detection latency is the gap between the time that an event is
detected by the framework and the time that such an event were actually happened. The throughput is
calculated by measuring a number of events that are detected by the framework in one minute.

Our experiment is carried out under the smart office application domain (see Section 1.3). In
order to avoid the overhead produced from hardware and network communication, we chose to
conduct our experiments by means of simulations. To do so, we developed a simulation script
which can simulate streams of data from a sensor network. The sensor network that we simulate is
the smart office sensor network as given in Figure 1.2. However, instead of simulating the whole
room as described in the figure, the simulation script can be configured such that, the number of
temperature sensors, light sensors, computer sensors and, video cameras within the room can be
changed. This allows to simulate a high workload case by increasing number of sensors within the
simulation. The characteristic of each type of sensors within the simulation is as follows:

• Video Camera: A simulated video camera sensor produces a random image frame at a
configurable sampling frequency. Possible images are either an image of an office with
no people inside or an image with at least one people inside;

• Temperature sensor, Light sensor: Both of these sensors produce a reading by

randomizing a value based on a standard deviation;

• Computer Sensor: A simulated computer sensor produces a random list of processes that are
currently running on the computer. The possible processes are Word, Powerpoint and Skype. The

list of processes can also be empty to reflect that there is no process that is currently running.

Within the simulation, we can freely configure the sampling frequency of each sensor. For
example, a simulation script can configure a temperature sensor to produce a reading for every 1
second and configure a video camera to produce an image frame for every 100 milliseconds.

According to the design of our framework, we identified three main factors that might affect
the performance: (i) number of sensors, (ii) sampling frequency and, (iii) number of operators
within an event statement. We conducted three sets of experiments to verify the effect of
varying each of these factors. The specification of the computer that is used in our
experiments is: Ubuntu 16.04 operating system, CPU Intel Core I7 2.4 GHz and 8GB of RAM.
The experiment setups and results are described in sub-sections as follows.

6.3.1 Impact of the number of sensors

To measure the impact of the number of sensors on the performance of GST-CEMiD, we
followed the following steps:

1. Initiate 100 simulation instances, each instance is configured to have one video camera and
one temperature sensor, representing a scenario with 200 sensors. Each sensor is
configured to produce a sensor reading with a sampling rate of 500 milliseconds per reading.

2. Each simulation instance is configured to detect the following event statements:

• OVERLAPS(face_detected, high_temp)

6.3. Experiments 81

• SEQ(face_detected, high_temp, 2)

3. Run the simulation for 10 minutes, measure the event average detection latency and
throughput per minute.

4. Redo all steps by changing the number of simulation instances to 200, 300, 400, and

500, which means scenarios with 400, 600, 800, and 1000 sensors, respectively.

Figure 6.4 and Figure 6.5 show that temporal operators SEQ and OVERLAPS have different
performance since they have different processing algorithms which may affect the latency and
throughput in a different manner. However, their trends are similar.

Figure 6.4 – Impact of number of sensors on detection latency

Results suggest that the detection latency is approximately 501 - 510 ms in all cases for
OVERLAPS operator and approximately 520 - 620 ms for SEQ operator statements. This shows
that increasing the number of sensors has very little effect on the detection latency as Figure 6.4
reveals that the detection latency tends to be constant regardless the number of sensors used.

Figure 6.5 shows the effect of increasing the number of sensors against throughput (in the unit
of numbers of detected events per minute). The result shows that the framework can support up to
11,631 events per minute in a statement with OVERLAPS operator and 10,034 events per minute
in a SEQ operator case. Thus, this shows that our framework can be used in a high workload case.

Figure 6.5 – Impact of number of sensors on throughput

82 CHAPTER 6. GST-CEMiD

6.3.2 Impact of sensor sampling frequency

The variation of the sampling frequency of each sensor means more numbers of sensor readings
produced per second. This may have a direct effect on event detection latency and throughput
because the number of incoming sensor readings per minute could be different. In order to verify
this, we conducted this set of experiments with the same experiment instruction as in previous
experiments, except varying the sampling frequency from 500 ms as in previous experiments to
200 ms, 400 ms, 600 ms, 800 ms and 1000 ms. The number of sensors used for each experiment
is also fixed to 1000 sensors (i.e., 500 simulation instances as in the previous experiment).

Figure 6.6 shows that the effect of increasing the sampling frequency on detection latency tends to
be linear. The SEQ operator has more latency for approximately 10-30 ms in all cases. The figure also
reveals that the detection latency for all cases tends to be almost equal to the sampling frequency.

Figure 6.6 – Impact of of sensor sampling frequency on detection latency

Figure 6.7 shows that the effect of increasing sampling frequency on throughput. The result reveals that the

throughput per minute decreases in a logarithmic pattern as the sensor sampling frequency is increased.

Figure 6.7 – Impact of sensor sampling frequency on throughput

6.3.3 Impact of number of operators

To verify the effect of varying the number of event operators against the detection latency and
throughput of GST-CEMID, we performed the following steps:

6.3. Experiments 83

1. Initiate 100 simulation instances, each instance is configured to have one video camera and
one temperature sensor, representing a scenario with 200 sensors. Each sensor is
configured to produce a sensor reading with a sampling rate of 500 milliseconds per reading.

2. Each simulation instance is configured to detect the following event statements:

• CREATE EVENT exp:o1

STATEMENT OVERLAPS(cond:face,cond:high_light)

• CREATE EVENT exp:o2
STATEMENT OVERLAPS(

OVERLAPS(cond:face,cond:high_light),

cond:high_temp)

• CREATE EVENT exp:o3

STATEMENT OVERLAPS(OVERLAPS(OVERLAPS(cond:face,cond:high_light),

cond:high_temp), cond:working)

• CREATE EVENT exp:o4

STATEMENT OVERLAPS(OVERLAPS(OVERLAPS(OVERLAPS(cond:face,cond:high_light),

cond:high_temp), cond:working),

cond:videoconf)

3. Run the simulation for 10 minutes, measure the average detection latency of every
detected event occurrences.

4. Restart steps 2-4 and changes every operator in each statement of step 2 from OVERLAPS to SEQ.

The event statements used in this experiment were designed solely for testing the
performance. Hence, these statements may not totally reflect the real world use case. The
experiment results are given in Figure 6.8 and Figure 6.9.

Figure 6.8 – Impact of number of operators on detection latency

Figure 6.8 depicts the result of the effect of varying the number of event operators against detection

latency. For OVERLAPS operator case, varying the number of operators show only minor effect. However, the

difference in detection latency for SEQ operator changes when using one SEQ operator and two SEQ

84 CHAPTER 6. GST-CEMiD

operators. The detection latency for one operator case is approximately 550 ms while two
operators, three operators, and four operators case show the latency for almost 1000 ms. This may
be caused by the queue congestion during the SEQ operator processing within the pipeline.

Figure 6.9 – Impact of number of operators on throughput

Figure 6.9 shows the effect of increasing the number of operators against throughput. The
result reveals that increasing the number of operators decreases the overall throughput. As
expected, the pattern of decreasing tends to be linear. The pattern may be different if the
number of operators increases further than four operators. However, an event statement
which requires more than five operators is rare in practice according to our experience.

6.3.4 Discussion

So far, we conducted experiments to verify the performance of our framework by means of simulation. The
experiments that are conducted are designed to study the effect of increasing number of sensors, varying
sensor sampling frequency and the variation of the number of operators in a statement. The result shows that
the detection latency is less than 1000 ms in almost every cases. This shows that the performance of our
framework is sufficient to be used in a near real-time scenario. Commercial grade event detection engines may

claim for a better performance, such as ESPER
2
 library, whose reported latency lies in three microseconds

average. However, we can support event processing in MSNs, while ESPER cannot.
Due to the fact that our experiment is conducted under the simulated environment, the overhead on

network communication and multimedia data were not taken into account within these results. However,
both of the latency produced by these effects are ought to be proportional. Hence, the pattern of the
result on the detection latency and throughout is ought to similar to our simulation in the practical case.

2 http://www.espertech.com/esper/

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Multimedia sensor networks have received an extensive focus from both academic and commercial sector in

recent years, in the context of everyday live applications, such as monitoring, tracking, and facilitating daily life

activities. They have been used in advanced applications, such as smart buildings, smart homes, and smart

cities. However, despite their popularity, processing complex events in multimedia sensor networks is an open

challenge to be overcome. The major cause is the fact that multimedia sensor networks infrastructure, the data

types that they can produce, and the different kinds of events that users would like to detect can be very

diverse. This diversity makes it difficult to propose a single yet full-fledged framework which is able to process

complex events in multimedia sensor networks in various domain

7.1.1 Analysis of existing solutions and related studies

On the course of our study, we survey the most recent and extensive used solutions that can be used for

processing complex events in multimedia sensor networks. A suitable solution for processing complex events

in multimedia sensor networks is needed to allow users to: (i) model their own sensor network infrastructure;

(ii) work with multimedia sensors and multimedia data; and (iii) model their events that they would like to detect

on their own. So far, we find that there is no existing solution that can comprehensively address all of these

aspects. Studies that are related to sensor network infrastructure modeling can support well the infrastructure

modeling. However, they cannot work with multimedia sensors and multimedia data. Studies that focus on

multimedia processing can work with multimedia data well, but they cannot be used for modeling sensor

networks and events within the sensor networks. Studies that focus on complex event processing are also

mostly focused on business activities monitoring. Hence, they can neither be used for modeling sensor

networks nor work with multimedia data.

7.1.2 Contributions

In this study, we propose the CEMiD framework to support Complex Events ModelIng and Detection in
multimedia sensor network. The framework is a semantic-based framework which allows users to model
their own multimedia sensor network infrastructure and events that they would like to detect from
multimedia sensor network applications. The framework utilizes the ontology-based data model by
adopting our newly proposed ontology so called the Multimedia Semantic Sensor Network Ontology (MSSN-

Onto) for modeling all the necessary data. The CEMiD language is also proposed as a high-level

85

86 CHAPTER 7. Conclusion and Future Work

interface for users to model all the infrastructure and events. The framework uses all the
predefined sensor network models and event models provided by users to preprocess all the
incoming raw multimedia sensor data stream and translating them into events. All the processing
algorithms are described in this study. The practical implementation of our CEMiD framework is
based on the GST-CEMiD engine. It is developed by extending the GStreamer framework and
adding all the CEMiD event processing functionality as a plugin so called the gst-cemid.

The core contributions of this dissertation are the MSSN-Onto, CEMiD language, and the
CEMiD framework (i.e., GST-CEMiD engine). To validate the effectiveness of our
contributions, we conduct the validation as follows:

• MSSN-Onto Validation: We validate the suitability of the MSSN-Onto itself whether it can be used
for modeling multimedia sensor networks effectively. The ontology validation is done separately
without adopting the full CEMiD framework in order to verify solely the capability of the ontology.
The result suggests a positive result as the ontology can be effectively aligned with different kind of
application domains. It can be used as a basis for creating an application for modeling and
detecting events in the AMI Smart Meeting Room application effectively with an acceptable event
querying performance and accuracy. The ontology itself is also currently being adopted in the
HIT2GAP project which is an EU collaborative research project on a smart building application;

• CEMiD Language Validation: We validate the suitability of the CEMiD language by

measuring its compactness comparing with the case of using purely SPARQL to
manipulate the MSSN-Onto directly. The result shows that CEMiD language can reduce
the query size by 52%. The JSON serialized version of the language can also helps to
reduce the query size further to 69% comparing with using purely SPARQL;

• CEMiD Framework Validation: We develop the CEMiD framework on top of the MSSN-Onto and the

CEMiD language. Through the course of the development, we propose a pipeline-based event detection

engine so called the GST-CEMiD. We validate the performance of the GST-CEMiD, and the full

framework itself under the Smart Office scenario. We choose to conduct the experiment under a

simulated environment such that, we can freely adjust types of sensors and number of sensors within a

simulated office to simulate different types of workload. The simulations were designed to study the

effect of increasing number of sensors, varying sensor sampling frequency and varying the number of

operators in a statement. The result showed that the detection latency is less than 1000 ms in almost

every case. This shows that the performance of our framework is sufficient
to be used in a near real-time scenario. Commercial grade event detection engines may

claim for a better performance, such as ESPER
1
 library, whose reported latency lies in

three microseconds average. However, we can support event processing in multimedia
sensor networks, while ESPER cannot.

7.2 Future Work

List of possible future directions of this dissertation that can be carried out can be categorized
into two main directions, technical direction and scientific direction. They are given as follows

7.2.1 Technical directions for the possible future work

The list of possible future work in a technical direction are given as follows:

1 //www.espertech.com/esper/

7.2. Future Work 87

1. Developing a full version of the framework: The development of the CEMiD framework is
currently at its prototyping state. Hence, the current version of the framework still lacks
the programming interface or API which users or developers can use for applying the
framework in their application domain yet. This is currently our on-going work;

2. Proposing more user-friendly interface for interacting with the framework: The current

ver-sion of our framework offers users only the CEMiD language for interacting with the
framework. In a practical case, some end-user might find that the CEMiD language is still
too technical or too complicated for them to use. Hence, proposing a more user-friendly
interface (e.g., a visual style language, simpler version of the CEMiD language) is one of
the possible direction of the future work;

3. Adopting the framework in different application domains: In order to prove that our framework is

generic in practical usage, we need to try to adopt the framework in different application domains.
In this study, we based our scenario and validation experiments on the smart office scenario. In the
future, we will try to apply the CEMiD framework in more application domains. Currently,

our framework is adopted in HIT2GAP European H2020 project
2
 to detect events related

to energy. Results will be published in the future.

7.2.2 Scientific directions for the possible future work

The list of possible future work in a scientific direction are given as follows:

1. Time Synchronization: Current version of the framework assumes that the timestamp of
all the data arrived from sensors are always synchronized. However, such an
assumption may not be able to be used in every use-case. A better time synchronization
algorithm from non-clock synchronization sensor networks may need to be proposed;

2. Optimizing Operator Processing: The near-real time operator of the current version of

our framework processes events with latency of approximately 200 - 1000 ms. This may
be acceptable in a near-real time use-case. However, in the case of a very large sensor
network, operating latency can become slower due to resource limitation. Hence, the
algorithm for processing operators may need to be optimize such that, it can process
event faster, consume less processing power, and can be used in a larger sensor
network size. The ideal goal is to reach the same performance level with ESPER library;

3. Sensor as a Service: Current version of the framework relies often on external functions

modeled as an IRI (e.g., sensing method, atomic event detection function). In future study,
these methods could be modeled as a service. Hence, sensors and methods that each
sensor used can always be reused in different sensor networks as a service-like manner;

2 http://www.hit2gap.eu

88 CHAPTER 7. Conclusion and Future Work

Bibliography

[1] Mike Botts et al. “OGC Sensor Web Enablement: Overview and High Level Architecture”. en. In: ed. by
Silvia Nittel, Alexandros Labrinidis, and Anthony Stefanidis. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2008, pp. 175–190. ISBN: 978-3-540-79995-5, 978-3-540-79996-2.

[2] Shailendra Aswale and Vijay R. Ghorpad. “Wireless Multimedia Sensor Network: A Survey on Mul-
timedia Sensors”. In: International Conference on Recent Trends in Information,

Telecommunication and Computing. Aug. 2013, pp. 31–37.

[3] Taner Cevik, Alex Gunagwera, and Nazife Cevik. “A Survey of multimedia streaming in

wireless sensor networks: progress, issues and design challenges”. In: CoRR
abs/1512.03565 (2015). URL: http://arxiv.org/abs/1512.03565.

[4] John Soldatos et al. “Multimedia Search over Integrated Social and Sensor Networks”. In: Proceed-

ings of the 21st International Conference on World Wide Web. WWW ’12 Companion. Lyon, France:
ACM, 2012, pp. 283–286. ISBN: 978-1-4503-1230-1. DOI: 10.1145/2187980.2188029.

[5] Michael Compton et al. “The SSN ontology of the W3C semantic sensor network incubator

group”. In: Web Semantics: Science, Services and Agents on the World Wide Web Volume 17 (Dec.
2012), pp. 25–32. ISSN: 1570-8268. URL: http://www.sciencedirect.com/science/
article/pii/S1570826812000571 (visited on 12/16/2013).

[6] J. Caleb Goodwin and David J. Russomanno. “Ontology integration within a service-oriented

architecture for expert system applications using sensor networks”. In: Expert Systems 26.5 (2009),

pp. 409–432. ISSN: 1468-0394. DOI: 10.1111/j.1468-0394.2009.00505.x.

[7] Chrisa Tsinaraki, Panagiotis Polydoros, and Stavros Christodoulakis. “Interoperability

Support for Ontology-Based Video Retrieval Applications”. en. In: ed. by Peter Enser et
al. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Jan. 2004, pp. 582–
591. ISBN: 978-3-540-22539-3, 978-3-540-27814-6.

[8] Richard Arndt et al. “COMM: Designing a Well-Founded Multimedia Ontology for the Web”. In: ed.

by Karl Aberer et al. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Jan. 2007,

pp. 30–43. ISBN: 978-3-540-76297-3, 978-3-540-76298-0.

[9] François Bry and Michael Eckert. “Rule-Based Composite Event Queries: The Language XChangeEQ
and Its Semantics”. In: Web Reasoning and Rule Systems. Lecture Notes in Computer Science
4524. Springer Berlin Heidelberg, June 7, 2007, pp. 16–30. ISBN: 9783540729815 9783540729822.
URL: http://link.springer.com/chapter/10.1007/978-3-540-72982-2_2
(visited on 08/11/2016).

[10] Darko Anicic et al. “ETALIS: Rule Based Reasoning in Event Processing”. In: Reasoning in Event-

Based Distributed Systems. Studies in Computational Intelligence 347. Springer Berlin Heidelberg,
2011, pp. 99–124. ISBN: 9783642197239 9783642197246. URL: http://link.springer.
com/chapter/10.1007/978-3-642-19724-6_5 (visited on 08/11/2016).

89

http://arxiv.org/abs/1512.03565
http://dx.doi.org/10.1145/2187980.2188029
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://dx.doi.org/10.1111/j.1468-0394.2009.00505.x
http://link.springer.com/chapter/10.1007/978-3-540-72982-2_2
http://link.springer.com/chapter/10.1007/978-3-642-19724-6_5
http://link.springer.com/chapter/10.1007/978-3-642-19724-6_5

90 Bibliography

[11] Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. “Energy efficiency in wireless sensor
networks: A top-down survey”. In: Computer Networks 67.Supplement C (2014), pp. 104–122. ISSN:
1389-1286. DOI: https://doi.org/10.1016/j.comnet.2014.03.027. URL: http:
//www.sciencedirect.com/science/article/pii/S1389128614001418.

[12] Adolph Seema and Martin Reisslein. “Towards Efficient Wireless Video Sensor Networks: A

Survey of Existing Node Architectures and Proposal for A Flexi-WVSNP Design”. In: IEEE
Communications Surveys Tutorials 13.3 (Third 2011), pp. 462–486. ISSN: 1553-877X. DOI:
10. 1109/SURV.2011.102910.00098.

[13] Priyanka Rawat et al. “Wireless sensor networks: a survey on recent developments and potential

synergies”. In: The Journal of Supercomputing 68.1 (Apr. 2014), pp. 1–48. ISSN: 1573-0484. DOI:
10.1007/s11227-013-1021-9. URL: https://doi.org/10.1007/s11227-013-
1021-9.

[14] Jeff Adkins et al. Event Processing Glossary Version 2.0. Real Time Intelligence & Complex Event

Processing. July 2011. URL: http://www.complexevents.com/2011/08/23/event-

processing-glossary-version-2/ (visited on 08/11/2016).

[15] Michael Eckert et al. “A CEP Babelfish: Languages for Complex Event Processing and Querying
Surveyed”. In: Reasoning in Event-Based Distributed Systems. Studies in Computational Intelligence
347. Springer Berlin Heidelberg, 2011, pp. 47–70. ISBN: 9783642197239 9783642197246. URL:
http : / / link . springer . com / chapter / 10 . 1007 / 978 - 3
- 642 - 19724 - 6 _ 3 (visited on 08/11/2016).

[16] Alan J Demers et al. “Cayuga: A General Purpose Event Monitoring System.” In: CIDR.

Vol. 7. 2007, pp. 412–422.

[17] EsperTech. Chapter 5. EPL Reference: Clauses. URL: http : / / www . espertech
. com / esper/release-5.3.0/esper-reference/html/epl_clauses.html
(visited on 08/11/2016).

[18] Masoud Mansouri-Samani and Morris Sloman. “GEM: a generalized event monitoring language

for distributed systems”. In: Distributed Systems Engineering 4.2 (1997), p. 96. URL: http :
//stacks.iop.org/0967-1846/4/i=2/a=004.

[19] Chinnapong Angsuchotmetee and Richard Chbeir. “A Survey on Complex Event

Definition Lan-guages in Multimedia Sensor Networks”. In: Proceedings of the 8th

International Conference on Management of Digital EcoSystems. MEDES. Biarritz, France:
ACM, 2016, pp. 99–108. ISBN: 978-1-4503-4267-4. DOI: 10.1145/3012071.3012098.

[20] Samuel Madden and Michael J. Franklin. “Fjording the stream: an architecture for queries over

streaming sensor data”. In: Proceedings 18th International Conference on Data Engineering. 2002,
pp. 555–566. DOI: 10.1109/ICDE.2002.994774.

[21] Phillip B. Gibbons et al. “IrisNet: an architecture for a worldwide sensor Web”. In: IEEE Perva-

sive Computing 2.4 (Oct. 2003), pp. 22–33. ISSN: 1536-1268. DOI: 10.1109/MPRV.2003.

1251166.

[22] Seongwoon Jeong et al. “A distributed cloud-based cyberinfrastructure framework for
integrated bridge monitoring”. In: Proc SPIE 10168 (2017). DOI: 10.1117/12.2270716.

[23] Alan G. Labouseur et al. “The G* graph database: efficiently managing large distributed dynamic

graphs”. In: Distributed and Parallel Databases 33.4 (Dec. 2015), pp. 479–514. ISSN: 1573-7578.
DOI: 10.1007/s10619-014-7140-3. URL: https://doi.org/10.1007/s10619-014-
7140-3.

http://dx.doi.org/https:/doi.org/10.1016/j.comnet.2014.03.027
http://www.sciencedirect.com/science/article/pii/S1389128614001418
http://www.sciencedirect.com/science/article/pii/S1389128614001418
http://dx.doi.org/10.1109/SURV.2011.102910.00098
http://dx.doi.org/10.1109/SURV.2011.102910.00098
http://dx.doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1007/s11227-013-1021-9
https://doi.org/10.1007/s11227-013-1021-9
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://link.springer.com/chapter/10.1007/978-3-642-19724-6_3
http://link.springer.com/chapter/10.1007/978-3-642-19724-6_3
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/epl_clauses.html
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/epl_clauses.html
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/epl_clauses.html
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/epl_clauses.html
http://stacks.iop.org/0967-1846/4/i=2/a=004
http://stacks.iop.org/0967-1846/4/i=2/a=004
http://dx.doi.org/10.1145/3012071.3012098
http://dx.doi.org/10.1109/ICDE.2002.994774
http://dx.doi.org/10.1109/MPRV.2003.1251166
http://dx.doi.org/10.1109/MPRV.2003.1251166
http://dx.doi.org/10.1117/12.2270716
http://dx.doi.org/10.1007/s10619-014-7140-3
https://doi.org/10.1007/s10619-014-7140-3
https://doi.org/10.1007/s10619-014-7140-3
https://doi.org/10.1007/s10619-014-7140-3

Bibliography 91

[24] Umit Isikdag and Morakot Pilouk. “Integration of Geo-Sensor Feeds and Event Consumer
Ser-vices for Real-Time Representation of Iot Nodes”. In: ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences (June 2016), pp. 267–274. DOI:
10.5194/isprs-archives-XLI-B4-267-2016.

[25] Cihan Küçükkeçeci and Adnan Yazıcı. “Big Data Model Simulation on a Graph Database for

Surveillance in Wireless Multimedia Sensor Networks”. In: Big Data Research (2017). ISSN:
2214-5796. DOI: https://doi.org/10.1016/j.bdr.2017.09.003. URL: http:
//www.sciencedirect.com/science/article/pii/S2214579617300102.

[26] Tong Lee Chung et al. “Semantic Technology: Third Joint International Conference, JIST 2013,

Seoul, South Korea, November 28–30, 2013, Revised Selected Papers”. In: ed. by Wooju Kim,
Ying Ding, and Hong-Gee Kim. Cham: Springer International Publishing, 2014. Chap. Constructing
City Ontology from Expert for Smart City Management, pp. 187–194. ISBN: 978-3-319-06826-8.
DOI: 10.1007/978-3-319-06826-8_15.

[27] Thanos G. Stavropoulos et al. “BOnSAI: A Smart Building Ontology for Ambient Intelligence”. In:

Proceedings of the 2Nd International Conference on Web Intelligence, Mining and Semantics. WIMS

’12. Craiova, Romania: ACM, 2012, 30:1–30:12. ISBN: 978-1-4503-0915-8. DOI: 10.1145/
2254129.2254166. URL: http://doi.acm.org/10.1145/2254129.2254166.

[28] Khouloud Salameh et al. “Artificial Intelligence Applications and Innovations: 11th IFIP WG

12.5 International Conference, AIAI 2015, Bayonne, France, September 14-17, 2015,
Proceedings”. In: ed. by Richard Chbeir et al. Cham: Springer International Publishing, 2015.
Chap. A Generic Ontology-Based Information Model for Better Management of Microgrids,
pp. 451–466. ISBN: 978-3-319-23868-5. DOI: 10.1007/978-3-319-23868-5_33. URL:
http://dx.doi. org/10.1007/978-3-319-23868-5_33.

[29] Michael Compton. “The SSN ontology of the W3C semantic sensor network incubator group”. In:

Web Semantics: Science, Services and Agents on the World Wide Web Volume 17 (Dec. 2012), pp. 25–
32. ISSN: 1570-8268. URL:
http://www.sciencedirect.com/science/article/ pii/S1570826812000571
(visited on 12/16/2013).

[30] Carlos Rueda, Lui Bermudez, and Janet Fredericks. “The MMI Ontology Registry and Repository:

A portal for Marine Metadata Interoperability”. In: OCEANS 2009. Oct. 2009, pp. 1–6.

[31] Claudia Villalonga et al. “Modeling of sensor data and context for the Real World Internet”. In:

2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops). Mar. 2010, pp. 1–6. DOI: 10.1109/PERCOMW.2010.5470594.

[32] Omer B. Sezer, Serdar Z. Can, and Erdogan Dogdu. “Development of a smart home

ontology and the implementation of a semantic sensor network simulator: An Internet of
Things approach”. In: 2015 International Conference on Collaboration Technologies and

Systems (CTS). June 2015, pp. 12–18. DOI: 10.1109/CTS.2015.7210389.

[33] Qin Ni, Iván Pau, and Ana-Belén García-Hernando. “A foundational ontology-based

model for human activity representation in smart homes”. In: JAISE 8 (2016), pp. 47–61.
DOI: 10.3233/ AIS-150359.

[34] Tony C. T. Kuo and Arbee L. P. Chen. “Content-based query processing for video

databases”. In: IEEE Transactions on Multimedia 2.1 (Mar. 2000), pp. 1–13. ISSN: 1520-9210.

[35] Chenglang Lu, Mingyong Liu, and Zongda Wu. “SVQL: A SQL Extended Query Language for

Video Databases”. In: International Journal of Database Theory and Application 8.3 (), pp. 235–
248.

http://dx.doi.org/10.5194/isprs-archives-XLI-B4-267-2016
http://dx.doi.org/https:/doi.org/10.1016/j.bdr.2017.09.003
http://www.sciencedirect.com/science/article/pii/S2214579617300102
http://www.sciencedirect.com/science/article/pii/S2214579617300102
http://dx.doi.org/10.1007/978-3-319-06826-8_15
http://dx.doi.org/10.1145/2254129.2254166
http://dx.doi.org/10.1145/2254129.2254166
http://doi.acm.org/10.1145/2254129.2254166
http://dx.doi.org/10.1007/978-3-319-23868-5_33
http://dx.doi.org/10.1007/978-3-319-23868-5_33
http://dx.doi.org/10.1007/978-3-319-23868-5_33
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://www.sciencedirect.com/science/article/pii/S1570826812000571
http://dx.doi.org/10.1109/PERCOMW.2010.5470594
http://dx.doi.org/10.1109/CTS.2015.7210389
http://dx.doi.org/10.3233/AIS-150359
http://dx.doi.org/10.3233/AIS-150359

92 Bibliography

[36] Thomas Kurz et al. “SPARQL-MM - Extending SPARQL to Media Fragments”. In: The Semantic
Web: ESWC 2014 Satellite Events. Lecture Notes in Computer Science 8798. Springer International
Publishing, May 25, 2014, pp. 236–240. ISBN: 9783319119540 9783319119557. URL:
http: //link.springer.com/chapter/10.1007/978-3-319-11955-7_26
(visited on 08/11/2016).

[37] Nicolas Durand et al. “Ontology-Based Object Recognition for Remote Sensing Image

Interpreta-tion”. In: 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI

2007). Vol. 1. Oct. 2007, pp. 472–479. DOI: 10.1109/ICTAI.2007.111.

[38] Ioannis Kompatsiaris Vasileios Mezaris and Michael G. Strintzis. “An ontology approach to
object-based image retrieval”. In: Proceedings 2003 International Conference on Image Processing

(Cat. No.03CH37429). Vol. 2. Sept. 2003, DOI: 10.1109/ICIP.2003.1246729.

[39] Jane Hunter. “Enhancing the semantic interoperability of multimedia through a core ontology”. In:
IEEE Transactions on Circuits and Systems for Video Technology 13.1 (Jan. 2003), pp. 49–
58. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2002.808088.

[40] Roberto García and Òscar Celma. “Semantic Integration and Retrieval of Multimedia Metadata”. In:

2nd European Workshop on the Integration of Knowledge, Semantic and Digital Media.
Galway, Ireland, 2005.

[41] Lee, W., Bürger, T., Sasaki, F., Malaisé, V., Stegmaier, F., Söderberg, J. Ontology for

Media Resource 1.0. Tech. rep., W3C Media Annotation Working Group (06 2009). URL:
http://www.w3.org/ TR/mediaont-10/ (visited on 06/24/2015).

[42] Shih-Fu Chang, T. Sikora, and A. Purl. “Overview of the MPEG-7 standard”. In: IEEE Transactions

on Circuits and Systems for Video Technology 11.6 (June 2001), pp. 688–695. ISSN: 1051-8215.
DOI: 10.1109/76.927421.

[43] James F. Allen. “Maintaining Knowledge About Temporal Intervals”. In: Commun. ACM 26.11

(Nov. 1983), pp. 832–843. ISSN: 0001-0782. DOI: 10 . 1145 / 182 . 358434. URL:
http : //doi.acm.org/10.1145/182.358434.

[44] Sharma Chakravarthy and Deepak Mishra. “Snoop: An expressive event specification language

for active databases”. In: Data & Knowledge Engineering 14.1 (Nov. 1, 1994), pp. 1–26. ISSN:
0169-023X. URL: http : / / www . sciencedirect . com / science /
article / pii / 0169023X9490006X (visited on 08/11/2016).

[45] Roger S. Barga and Hillary Caituiro-Monge. “Event Correlation and Pattern Detection in CEDR”. In:

Current Trends in Database Technology – EDBT 2006: EDBT 2006 Workshops PhD, DataX, IIDB,

IIHA, ICSNW, QLQP, PIM, PaRMA, and Reactivity on the Web, Munich, Germany, March 26-
31, 2006, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
919–930. ISBN: 978-3-540-46790-8.

[46] Daniel Gyllstrom et al. “SASE: Complex Event Processing over Streams”. In: arXiv:cs/0612128

(Dec. 22, 2006). arXiv: cs/0612128. URL: http://arxiv.org/abs/cs/0612128
(visited on 08/11/2016).

[47] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “CQL: A Language for Continuous Queries over

Streams and Relations”. In: Database Programming Languages. Lecture Notes in Computer Science
2921. Springer Berlin Heidelberg, Sept. 6, 2003, pp. 1–19. ISBN: 9783540208969 9783540246077.
URL: http://link.springer.com/chapter/10.1007/978-3-540-24607-7_1
(visited on 08/11/2016).

[48] StreamSQL Guide. URL: https://docs.tibco.com/pub/streambase_cep/7.3.10/

doc/streamsql/index.html (visited on 08/11/2016).

http://link.springer.com/chapter/10.1007/978-3-319-11955-7_26
http://link.springer.com/chapter/10.1007/978-3-319-11955-7_26
http://link.springer.com/chapter/10.1007/978-3-319-11955-7_26
http://dx.doi.org/10.1109/ICTAI.2007.111
http://dx.doi.org/10.1109/ICIP.2003.1246729
http://dx.doi.org/10.1109/TCSVT.2002.808088
http://www.w3.org/TR/mediaont-10/
http://www.w3.org/TR/mediaont-10/
http://dx.doi.org/10.1109/76.927421
http://dx.doi.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://www.sciencedirect.com/science/article/pii/0169023X9490006X
http://www.sciencedirect.com/science/article/pii/0169023X9490006X
http://www.sciencedirect.com/science/article/pii/0169023X9490006X
http://arxiv.org/abs/cs/0612128
http://arxiv.org/abs/cs/0612128
http://link.springer.com/chapter/10.1007/978-3-540-24607-7_1
https://docs.tibco.com/pub/streambase_cep/7.3.10/doc/streamsql/index.html
https://docs.tibco.com/pub/streambase_cep/7.3.10/doc/streamsql/index.html

Bibliography 93

[49] Jürgen Krämer and Bernhard Seeger. “PIPES: A Public Infrastructure for Processing and Exploring
Streams”. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’04. Paris, France: ACM, 2004, pp. 925–926. ISBN: 1-58113-859-8.

[50] Davide Francesco Barbieri et al. “Querying RDF Streams with C-SPARQL”. In: SIGMOD Rec.

39.1 (Sept. 2010), pp. 20–26. ISSN: 0163-5808. (Visited on 08/11/2016).

[51] Matthew Perry, Prateek Jain, and Amit P. Sheth. “SPARQL-ST: Extending SPARQL to Support

Spatiotemporal Queries”. In: Geospatial Semantics and the Semantic Web: Foundations, Algorithms,
and Applications. Boston, MA: Springer US, 2011, pp. 61–86. ISBN: 978-1-4419-9446-2.

[52] Jean-Paul Calbimonte et al. “Enabling Ontology-Based Access to Streaming Data Sources”. In: The

Semantic Web – ISWC 2010: 9th International Semantic Web Conference, ISWC 2010, Shanghai,
China, November 7-11, 2010, Revised Selected Papers, Part I. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 96–111. ISBN: 978-3-642-17746-0.

[53] Darko Anicic et al. “EP-SPARQL: A Unified Language for Event Processing and Stream Reasoning”.

In: Proceedings of the 20th International Conference on World Wide Web. WWW ’11. New York,
NY, USA: ACM, 2011, pp. 635–644. ISBN: 978-1-4503-0632-4. (Visited on 07/03/2015).

[54] Alex Kozlenkov et al. “Prova: Rule-Based Java Scripting for Distributed Web Applications: A Case

Study in Bioinformatics”. In: Current Trends in Database Technology – EDBT 2006: EDBT 2006
Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA, and Reactivity on the Web,

Munich, Germany, March 26-31, 2006, Revised Selected Papers. Ed. by Torsten Grust et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 899–908. ISBN: 978-3-540-46790-8.

[55] Adrian Paschke et al. “Reaction RuleML 1.0: Standardized Semantic Reaction Rules”. In: Rules

on the Web: Research and Applications: 6th International Symposium, RuleML 2012, Montpellier,

France, August 27-29, 2012. Proceedings. Ed. by Antonis Bikakis and Adrian Giurca. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 100–119. ISBN: 978-3-642-32689-9.

[56] Pierre Wellner, Mike Flynn, and Maël Guillemot. “Browsing Recorded Meetings with Ferret”.

In: ed. by Samy Bengio and Hervé Bourlard. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Jan. 2005, pp. 12–21. ISBN: 978-3-540-24509-4, 978-3-540-30568-2.

[57] Gianfranco E. Modoni, Marco Sacco, and Walter Terkaj. “A survey of RDF store solutions”. In:

2014 International Conference on Engineering, Technology and Innovation (ICE). June 2014,
pp. 1–7. DOI: 10.1109/ICE.2014.6871541.

http://dx.doi.org/10.1109/ICE.2014.6871541

94 Bibliography

Resumé

Introduction

L’avancée spectaculaire de la technologie de capteur, des communications sans fil et de l’électronique
numérique a favorisé le développement de réseaux de capteurs multimédias (sans fil) multifonctionnels
(sans fil). Les réseaux de capteurs multimédias sont des réseaux de dispositifs interconnectés capables
de récupérer de façon omniprésente du contenu multimédia, tels que des flux vidéo et audio, des images
et des données de capteurs encore scalaires provenant de l’environnement. De nos jours, les réseaux
de capteurs multimédias deviennent de plus en plus populaires et importants dans la vie de tous les
jours, pour surveiller, suivre et détecter des événements selon différents scénarios (e.g., maisons
intelligentes, immeubles intelligents, villes intelligentes).

La popularité des réseaux de capteurs (également des réseaux de capteurs multimédias) a conduit
à l’énorme quantité de données produites chaque jour par des capteurs. Ceci conduit à la difficulté de maintenir efficacement
les données provenant des réseaux de capteurs, de sorte que les événements puissent être détectés efficacement parmi les

données collectées. L’existence de dispositifs différents et intelligents dans le réseau rend ce défi plus difficile à surmonter en

raison de la diversité des types de capteurs, d’une grande variété de formats de sortie de capteurs et de la difficulté à

modéliser les données multimédias. un évènement. Pourtant, les approches pour la modélisation des réseaux de capteurs, la

modélisation des données collectées et l’assistance aux utilisateurs pour la modélisation et la détection des événements sont

à la traîne.
L’adoption de réseaux de capteurs multimédias ou hybrides (réseau de capteurs composé de

capteurs scalaires et multimédias) sur l’utilisation de capteurs uniquement scalaires permet à une
application de détecter des événements plus complexes qui ne peuvent être détectés sans utiliser le
multimédia. Les données. Par exemple, un réseau de capteurs de vitesse sur le bord de la route permet
uniquement la détection d’un événement de vitesse de conduite excessive. Cependant, enrichir le
réseau avec des caméras de surveillance permet de détecter des événements plus complexes, tels que
les événements Traffic Jam ou les accidents de voiture. L’analyse des images de caméra de
surveillance et des capteurs de vitesse peut également être utilisée pour détecter le numéro de plaque
de la voiture qui roule plus vite qu’une limite de vitesse. Même si les réseaux de capteurs multimédias
sont largement utilisés de nos jours, les problèmes concernant la difficulté de traitement des
événements persistent. Les principales raisons peuvent être brièvement développées comme suit.

• L’absence d’un modèle de données pour la modélisation des données collectées à partir des réseaux
de capteurs multimédias, ce qui peut faciliter la modélisation et la détection des événements;

• L’absence d’approche pour la modélisation et la détection d’événements dans les

réseaux de capteurs multimédias;

• L’absence d’interface, d’outil ou de langage pour accompagner les utilisateurs dans la
modélisation des événements complexes qui les intéressent.

95

96 Resumé

Dans un cas d’utilisation idéal d’une application de réseau de capteurs multimédias, les utilisateurs doivent
pouvoir modéliser l’infrastructure de réseau de capteurs et les événements qu’ils souhaitent détecter par eux-

mêmes sans avoir recours à un codage matériel ou une réimplémentation par les développeurs. Cependant,

l’absence d’un modèle de données adapté, un langage de modélisation des événements et une approche de
traitement des événements complexes dans les réseaux de capteurs multimédias forcent les développeurs à

coder en dur tous les modèles de données et le processus de détection. Pour surmonter ce problème, un

modèle de données approprié pour la modélisation de réseaux de capteurs multimédias, un langage qui aide

les utilisateurs à modéliser leurs propres besoins, et une approche pour traiter les événements qui sont

désignés pour des réseaux de capteurs multimédias doivent être proposés.

CEMiD:Un framework de traitement semantic d’événement dans
les reseaux des capteurs multimedias

Répondant aux objectifs proposés, cette étude propose un framework semantique appelé CEMiD
(Complex Event Modeling and Detection Framework). L’objectif principal du framework CEMiD est
de permettre aux utilisateurs de différents rôles de définir librement des événements en fonction de
leurs besoins, tout en conservant une architecture de bas niveau identique quel que soit le rôle ou
le domaine d’application des utilisateurs. L’architecture de CEMiD est donnée dans la figure 7.1.

Figure 7.1 – L’architecture de framework CEMiD

L’architecture du framework CEMiD est décrite en quatre modules principaux: (i) Dépôt de
données semantique (ii) CEMiD Intrepreter (iii) Préprocesseur de données, et (iv) Complexe
de traitement des événements complexes. Leurs brefs détails sont décrits comme suit:

• Dépôt de données semantique: Le dépôt de données semantique de framework CEMiD
composant dans lequel toutes les données sont stockées. Les cinq types de données sont
stockés dans leurs dépôt respectifs qui sont (i) emplacements de reseaux des capteurs, (ii)
infrastructure de reseaux des captures, (iii) données des capteurs, (iv) modèles des
événements, et (v) occurrence des événements. Toutes les données sont modèlisées
conformément à notre nouvelle ontologie proposée pour la modélisation de réseaux de
capteurs multimédias, appelée Multimedia Semantic Sensor Network (MSSN-Onto);

Resumé 97

• Interprèteur CEMiD: Interprèteur CEMiD sert d’interface de haut niveau pour aider les
utilisateurs à interagir avec le framework. Notre cadre propose un langage appelé
langage CEMiD pour modéliser leurs besoins;

• Pré-processeur: Ce composant est responsable du pré-traitement et de l’annotation des

flux de données de capteur entrants en utilisant MSSN-Onto. Ce module fonctionne
automatiquement en réponse à chaque lecture de capteur brut entrant;

• Moteur de traitement des événements complexes Le moteur de traitement des événements

com-plexes est responsable de la détection des événements tels que définis par les
utilisateurs via le langage CEMiD. Le processus de détection est lancé automatiquement en
réponse à chaque lecture de capteur. Le mécanisme interne de gestion de tous les pipelines
de détection d’événements dans le framework CEMiD est appelé GST-CEMiD.

Selon l’architecture décrite, on peut voir que le framework est développé au-dessus de
trois éléments de base qui sont MSSN-Onto, CEMiD Language, Complex Event Processing
Engine. Ces trois éléments de base sont également la principale contribution de ces études.
Leurs brefs détails sont décrits comme suit.

• Ontologie de réseau de capteurs sémantiques multimédias (MSSN-Onto): Cette ontologie a
été récemment proposée dans cette étude pour être utilisée comme une ontologie pour la
modélisation de réseaux de capteurs multimédias. Cette contribution aide à surmonter le défi
concernant l’absence d’un modèle de données approprié pour la modélisation de réseaux de
capteurs multimédias. Il permet de modéliser l’infrastructure des réseaux de capteurs
multimédias et toutes les données collectées de telle sorte que toutes les données
modélisées puissent être connectées à plusieurs domaines d’application;

• Langage CEMiD le langage CEMiD est un langage destiné aux utilisateurs pour modéliser

des événements complexes dans des réseaux de capteurs multimédias. Ce langage aide les
utilisateurs à modéliser leurs propres événements sans compter sur le codage ou la
réimplémentation du développeur. La base du langage CEMiD est prise à partir de plusieurs
langages de traitement d’événements complexes dans un style de syntaxe différent qui inclut
des langages de style ECA (Event-Condition-Action) et des langages de style SQL/SPARQL.
Le langage CEMiD est également disponible dans un format de sérialisation JSON;

• Moteur GST-CEMiD pour CEMiD Framework: GST-CEMiD fonctionne comme un prépro-

cesseur de données et un moteur de traitement d’événements complexes pour le framework
CEMiD. Le moteur est construit sur le MSSN-Onto et un framework de traitement multimédia
existant appelé GStreamer. Le moteur détecte les événements en créant des pipelines de
détection d’événements pour gérer tous les prétraitements de données, la détection
d’événements atomiques et la détection d’événements complexes en temps quasi réel.

Validations & Résultats

Le framework CEMiD est validé au moyen d’expérimentation. La première étape de la validation consiste
à valider la capacité de MSSN-Onto en tant qu’ontologie fondamentale pour la modélisation de réseaux de
capteurs multimédias. La validation montre un résultat satisfaisant en terme de généralité et d’expressivité de
l’ontologie. La généralité de l’ontologie est validée par la tentative d’alignement de l’ontologie dans différents
domaines d’application. Jusqu’à présent, l’ontologie est alignée avec une ontologie de bâtimente intelligente et
une ontologie de salle de réunion intelligente. L’expressivité de l’ontologie est validée en

98 Resumé

appliquant l’ontologie dans une application de salle de réunion intelligente. Les résultats
montrent que l’ontologie peut être utilisée efficacement pour modéliser des événements qui
peuvent être trouvés dans un scénario de salle de réunion intelligent tel qu’un discussion, une
présentation ou un changement de présentateurs.

La deuxième étape de la validation est la validation du framework CEMiD complet lui-même. Nous

validons le framework complet dans un scénario de bureau intelligent simulé. L’objectif de la validation est de
valider si le framework peut détecter des événements de manière quasi-temps réel dans un cas de charge de

travail élevée (cas avec un grand nombre de capteurs). Nous avons choisi de conduire au moyen d’une
simulation afin que le nombre de capteurs dans la simulation puisse être modifié librement. Les résultats de la

simulation montrent que le cadre peut encore détecter les événements de manière quasi-instantanée dans

notre cas extrême sélectionné (un cas avec 500 caméras vidéo et 500 capteurs de température).

Conclusion et Perspective

Cette étude propose un cadre de modélisation et de détection des événements dans les réseaux
de capteurs multimédias, appelé CEMiD. Le framework est construit sur trois éléments principaux
qui sont (i) le MSSN-Onto, (ii) le langage CEMiD et (iii) le moteur GST-CEMiD. Le résultat montre
que notre infrastructure peut être utilisée pour détecter des événements dans un scénario de
bureau virtuel simulé avec une charge de travail élevée (grand nombre de capteurs).

Deux directions possibles des travaux futurs peuvent être réalisées: (i) la direction
technique et (ii) la direction scientifique. Ils sont donnés comme suit.

• Direction technique

– Développer une version complète du framework: Le développement du framework
est actuellement à son état de prototypage. Par conséquent, la version actuelle du
framework n’a toujours pas l’interface de programmation ou API que les utilisateurs
ou les développeurs peuvent utiliser pour appliquer le framework dans leur domaine
d’application pour le moment. C’est actuellement notre travail en cours;

– Proposer une interface plus conviviale pour interagir avec le framework: La version actuelle de

notre framework n’offre aux utilisateurs que le langage CEMiD pour interagir avec le framework.

Dans un cas pratique, certains utilisateurs finaux pourraient trouver que le langage CEMiD est

encore trop technique ou trop compliqué pour être utilisé. Par conséquent, en proposant une

interface plus conviviale (par exemple, un langage de style visuel, une version plus simple de la

langue est l’une des directions possibles du travail futur);
– Adopter le framework dans différents domaines d’application: Afin de prouver que notre

framework est générique dans une utilisation pratique, nous devons essayer d’adopter le
framework dans différents domaines d’application. Dans cette étude, nous avons basé nos
expériences de scénario et de validation sur le scénario de bureau intelligent. À l’avenir, nous
essaierons d’appliquer le framework CEMiD dans plusieurs domaines d’application.
Actuellement, notre cadre est adopté dans le projet HIT2GAP européen H2020 pour détecter
les événements liés à l’énergie. Les résultats seront publiés dans le futur.

• Direction scientifique

– Synchronisation temporelle: La version actuelle de l’infrastructure suppose que

l’horodatage de toutes les données provenant des capteurs est toujours synchronisé.
Cependant, une telle hypothèse peut ne pas pouvoir être utilisée dans tous les cas
d’utilisation. Un meilleur algorithme de synchronisation temporelle à partir de réseaux
de capteurs de synchronisation non-horloge peut devoir être proposé;

Resumé 99

– Optimisation du traitement des opérateurs: L’opérateur en temps quasi-réel de la version actuelle

de notre framework traite les événements avec une latence d’environ 200 à 1000 ms. Cela peut
être acceptable dans un cas d’utilisation en temps quasi réel. Cependant, dans le cas d’un très
grand réseau de capteurs, la latence de fonctionnement peut devenir plus lente en raison de la

limitation des ressources. Par conséquent, l’algorithme de traitement des opérateurs peut devoir
être optimisé de telle sorte qu’il puisse traiter les événements plus rapidement, consommer moins

de puissance de traitement et être utilisé dans une taille de réseau de capteurs plus grande.

L’objectif idéal est d’atteindre le même niveau de performance avec la bibliothèque ESPER qui
peut détecter les événements avec latence au niveau microsecondes;

– Capteur en tant que service: La version actuelle du cadre repose souvent sur des fonctions

externes modélisées comme un IRI (par exemple, méthode de détection, fonction de détection

d’événement atomique). Dans une étude future, ces méthodes pourraient être modélisées en tant

que service. Par conséquent, les capteurs et les méthodes utilisés par chaque capteur peuvent

toujours être réutilisés dans différents réseaux de capteurs en tant que service.

