, Life expectancy at birth by region, both sexes combined, from 1950 to 2050. Data source: United Nations, p.2017, 2017.

. .. Revision, 9 2.2 Long-term care expenditure (health and social components) by government and compulsory insurance schemes, as a share of GDP (Gross Domestic Product, 2015.

-. Iso and . Smaf,

, Excerpt of Operators and Attributes definition proposed by Haidrar et al

G. Grammar and ;. ]. Environment-for-dolphin, 29 ((a)) Grammar for Dolphin tasks 29

, Grammar for Dolphin tasks 29

, Syntax

]. .. , 31 ((a)) START_MOVING action 31

. Volanschi,

, Comparison among the relations of ROC-20, vol.142

. .. Dsl-main-menu,

, Choice of time slots

. .. Display-of-results,

. .. Saving-of-results,

, Criteria proposed over the time dimension

.. .. Dressing,

.. .. Transfers,

. .. Toileting,

. .. Variable, 4 2.1 Works concerning monitoring and detection of ADL's/IADL's, 52 5.1 Orchestration of the AGGIR Alimentation, vol.32

A. ,

, Shanahan's event calculus formulas [161]

, Question marks (?) in the pictorial illustration stand for either the symbol denoting the event depicted in the same line (X or Y) or for a blank. The number of question marks reflects the number of qualitatively alternative implementations of the given relation

, Relations time points (tp) -time interval (x) Ribari? and Dalbelo Ba?i?

. Randell, 36 3.13 research works regarding location and event operators

. Spatial and . .. Operators,

, Additional data for recognition of activities

]. .. ,

A. Aamodt and E. Plaza, Case-based reasoning: Foundational issues, methodological variations, and system approaches, AI communications, vol.7, issue.1, pp.39-59, 1994.

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith et al., Towards a better understanding of context and context-awareness, International symposium on handheld and ubiquitous computing, pp.304-307, 1999.

G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos, A survey on ambient intelligence in healthcare, Proceedings of the IEEE, vol.101, issue.12, pp.2470-2494, 2013.

A. M. Adami, M. Pavel, T. L. Hayes, and C. M. Singer, Detection of movement in bed using unobtrusive load cell sensors, IEEE Transactions on Information Technology in Biomedicine, vol.14, issue.2, pp.481-490, 2010.

M. Alcañiz and B. Rey, New technologies for ambient intelligence, Ambient Intelligence, vol.3, issue.9, pp.3-15, 2005.

J. F. Allen, Maintaining knowledge about temporal intervals, Readings in qualitative reasoning about physical systems, vol.33, p.77, 1990.

O. Alliance, Osgi alliance: Osgi service platform, core specification, p.52, 2009.

K. Altun, B. Barshan, and O. Tunçel, Comparative study on classifying human activities with miniature inertial and magnetic sensors, Pattern Recognition, vol.43, issue.10, pp.3605-3620, 2010.

M. Alwan and J. Nobel, State of technology in aging services according to field experts and thought leaders, CAST (LeadingAge Center for Aging Services Technology, 2002.

M. Amrani, F. Gilson, E. , and V. , Complex event processing for usercentric management of iot systems, International Conference on Model-Driven Engineering and Software Development, vol.27, p.75, 2017.

C. Angsuchotmetee, R. Chbeir, Y. Cardinale, Y. , and S. , A dynamic event detection framework for multimedia sensor networks, Asia-Pacific Conference on Communications, vol.34, p.77, 2017.

J. C. Augusto, J. Liu, P. Mccullagh, H. Wang, Y. et al., Management of uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home, International Journal of Computational Intelligence Systems, vol.1, issue.4, pp.361-378, 2008.

A. Aztiria, A. Izaguirre, A. , and J. C. , Learning patterns in ambient intelligence environments: a survey, Artificial Intelligence Review, vol.34, issue.1, pp.35-51, 2010.

A. Badlani and S. Bhanot, Smart home system design based on artificial neural networks, Proceedings of the World Congress on Engineering and Computer Science, vol.1, pp.146-164, 2011.

O. Banos, C. Villalonga, M. Damas, P. Gloesekoetter, H. Pomares et al., Physiodroid: Combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring, The Scientific World Journal, p.40, 2014.

A. T. Barth, M. A. Hanson, H. C. Powell, and J. Lach, Tempo 3.1: A body area sensor network platform for continuous movement assessment, Body Sensor Networks, p.15, 2009.

M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and M. Beigl, Actiserv: Activity recognition service for mobile phones, International Symposium on Wearable Computers (ISWC) 2010, p.11, 2010.

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas et al., A survey of context modelling and reasoning techniques, Pervasive and Mobile Computing, vol.6, issue.2, pp.161-180, 2010.

L. Biacino and G. Gerla, Fuzzy logic, continuity and effectiveness. Archive for Mathematical Logic, vol.41, pp.643-667, 2002.

T. Bienkowska-gibbs, S. King, C. Saunders, and M. Henham, New organisational models of primary care to meet the future needs of the nhs. A brief overview of recent reports, 2015.

A. D. Black, J. Car, C. Pagliari, C. Anandan, K. Cresswell et al., The impact of ehealth on the quality and safety of health care: a systematic overview, PLoS medicine, vol.8, issue.1, 2011.

J. Boubeta-puig, G. Ortiz, and I. Medina-bulo, Model4cep: Graphical domainspecific modeling languages for cep domains and event patterns, Expert Systems with Applications, vol.42, issue.21, pp.8095-8110, 2015.

O. Brdiczka, P. Reignier, and J. L. Crowley, Supervised learning of an abstract context model for an intelligent environment, Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies, p.16, 2005.

B. Bruno, J. Grosinger, F. Mastrogiovanni, F. Pecora, A. Saffiotti et al., Multi-modal sensing for human activity recognition, Int. Symp. on Robot and Human Interactive Communication, vol.35, p.39, 2015.

A. Burns, B. R. Greene, M. J. Mcgrath, T. J. Shea, B. Kuris et al., Shimmer?-a wireless sensor platform for noninvasive biomedical research, IEEE Sensors Journal, vol.10, issue.9, pp.1527-1534, 2010.

A. Caione, A. Fiore, L. Mainetti, L. Manco, and R. Vergallo, Top-down delivery of iot-based applications for seniors behavior change capturing exploiting a model-driven approach, Journal of Communications Software and Systems, vol.31, p.77, 2018.

M. Chan, C. Hariton, P. Ringeard, and E. Campo, Smart house automation system for the elderly and the disabled, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol.2, p.16, 1995.

S. Chattopadhyay, S. Banerjee, F. A. Rabhi, and U. R. Acharya, A case-based reasoning system for complex medical diagnosis, Expert Systems, vol.30, issue.1, pp.12-20, 2013.

C. Chen, D. Zhang, L. Sun, M. Hariz, and Y. Yuan, Does location help daily activity recognition, International Conference on Smart Homes and Health Telematics, vol.12, p.13, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00751311

S. Chernbumroong, S. Cang, A. Atkins, Y. , and H. , Elderly activities recognition and classification for applications in assisted living, Expert Systems with Applications, vol.40, issue.5, p.14, 2013.

T. Chien, H. Wu, W. Wang, R. V. Castillo, and W. Chou, Reduction in patient burdens with graphical computerized adaptive testing on the adl scale: tool development and simulation, Health and Quality of Life Outcomes, vol.7, issue.1, pp.39-41, 2009.

C. Consel, From a program family to a domain-specific language, Domain-Specific Program Generation, p.37, 2004.

D. J. Cook, J. C. Augusto, and V. R. Jakkula, Ambient intelligence: Technologies, applications, and opportunities, Pervasive and Mobile Computing, vol.5, issue.4, p.33, 2009.

D. J. Cook, M. Huber, K. Gopalratnam, and M. Youngblood, Learning to control a smart home environment, Innovative applications of artificial intelligence, vol.15, 2003.

D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao et al., Mavhome: An agent-based smart home, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, p.15, 2003.

J. De-kruijff and H. Weigand, An introduction to commitment based smart contracts using reactionruleml, VMBO, vol.27, p.75, 2018.

M. De-la-torre-garcía, A. Hernández-santana, N. Moreno-moreu, R. Luis-jacinto, J. Deive-maggiolo et al., Use of the barthel index to measure functional recovery in an elderly population after hip fracture, vol.55, pp.263-269, 2011.

S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, and D. J. Cook, Simple and complex activity recognition through smart phones, 2012 Eighth International Conference on Intelligent Environments, p.15, 2012.

T. J. Dishongh and M. Mcgrath, Wireless sensor networks for healthcare applications, p.10, 2010.

B. Dormont and C. Martin, L'efficacité des ehpad en france, vol.20, p.21, 2011.

N. Dubuc, R. Hébert, J. Desrosiers, M. Buteau, and L. Trottier, Disabilitybased classification system for older people in integrated long-term care services: the iso-smaf profiles, Archives of gerontology and geriatrics, vol.42, issue.2, pp.191-206, 2006.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, B. et al., Istag scenarios for ambient intelligence in 2010. final report. European Commission, 2001.

E. Dupourqué, S. Schoonveld, and J. B. Bushey, Aggir, the work of grids. Longterm Care News, vol.32, p.77, 2012.

S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. Von-massow et al., Xbase: implementing domain-specific languages for java, ACM SIGPLAN Notices, vol.48, p.26, 2012.

M. Ermes, J. Parkka, and L. Cluitmans, Advancing from offline to online activity recognition with wearable sensors, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.10, 2008.

C. Escoffier, R. S. Hall, and P. Lalanda, ipojo: An extensible service-oriented component framework, Int. Conf. on Services Computing, p.52, 2007.

N. Farber, D. Shinkle, J. Lynott, W. Fox-grage, and R. Harrell, Aging in place: A state survey of livability policies and practices, 2011.

M. Fowler, Domain-specific languages. Pearson Education, p.26, 2010.

C. Franco, J. Demongeot, C. Villemazet, and N. Vuillerme, Behavioral telemonitoring of the elderly at home: Detection of nycthemeral rhythms drifts from location data, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops, p.15, 2010.

C. Freksa, Temporal reasoning based on semi-intervals, Artificial intelligence, vol.54, issue.1-2, p.77, 1992.

T. A. Furze and B. Bennett, Using the principles of classical conditioning to learn event sequences. Computational Models Of Cognitive Development, vol.35, p.77, 2011.

A. Galton, Lines of sight, AISB Workshop on Spatial and Spatio-Temporal Reasoning, vol.35, p.75, 1994.

M. Galushka, D. Patterson, and N. Rooney, Temporal data mining for smart homes. In Designing Smart Homes, p.16, 2006.

J. A. Goguen, The logic of inexact concepts, Synthese, vol.19, issue.3, pp.325-373, 1969.

D. Gordon, J. Czerny, T. Miyaki, and M. Beigl, Energy-efficient activity recognition using prediction, 2012 16th International Symposium on Wearable Computers, p.11, 2012.

B. Gottfried, H. W. Guesgen, and S. Hübner, Spatiotemporal reasoning for smart homes, Designing Smart Homes, p.33, 2006.

M. Goulão, V. Amaral, and M. Mernik, Quality in model-driven engineering: a tertiary study, Software Quality Journal, vol.24, issue.3, pp.601-633, 2016.

C. Graf, The lawton instrumental activities of daily living scale, AJN The American Journal of Nursing, vol.108, issue.4, pp.52-62, 2008.

M. Guo, J. Zhou, F. Tang, and Y. Shen, Pervasive computing: concepts, technologies and applications, 2016.

S. Haidrar, A. Anwar, J. Bruel, and O. Roudies, A domain-specific language to manage requirements traceability, vol.13, p.75, 2018.

R. Hébert, R. Carrier, and A. Bilodeau, The functional autonomy measurement system (smaf): description and validation of an instrument for the measurement of handicaps, Age and ageing, vol.17, issue.5, pp.293-302, 1988.

E. O. Heierman and D. J. Cook, Improving home automation by discovering regularly occurring device usage patterns, Third IEEE International conference on data mining, p.15, 2003.

S. Helal, B. Winkler, C. Lee, Y. Kaddoura, L. Ran et al., Enabling location-aware pervasive computing applications for the elderly, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, p.15, 2003.

R. Helaoui, M. Niepert, and H. Stuckenschmidt, Recognizing interleaved and concurrent activities: A statistical-relational approach, 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), p.45, 2011.

D. Hemapriya, P. Viswanath, V. Mithra, S. Nagalakshmi, and G. Umarani, Wearable medical devices-design challenges and issues, 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), p.10, 2017.

P. Henderson, Functional geometry, Proceedings of the 1982 ACM symposium on LISP and functional programming, p.26, 1982.

K. Henricksen, J. Indulska, and A. Rakotonirainy, Modeling context information in pervasive computing systems, International Conference on Pervasive Computing, pp.167-180, 2002.

H. Hetherington, R. Earlam, K. , and C. , The disability status of injured patients measured by the functional independence measure (fim) and their use of rehabilitation services, Injury, vol.26, issue.2, pp.97-101, 1995.

G. Hoelzl, M. Kurz, and A. Ferscha, Goal oriented opportunistic recognition of high-level composed activities using dynamically configured hidden markov models, Procedia Computer Science, vol.10, issue.11, pp.308-315, 2012.

J. Hong, E. Suh, J. Kim, K. , and S. , Context-aware system for proactive personalized service based on context history, Expert Systems with Applications, vol.36, issue.4, pp.7448-7457, 2009.

T. Hori and Y. Nishida, Ultrasonic sensors for the elderly and caregivers in a nursing home, ICEIS, p.15, 2005.

C. Hsu and J. Chen, A novel sensor-assisted rfid-based indoor tracking system for the elderly living alone, Sensors, vol.11, issue.11, pp.10094-10113, 2011.

T. Huynh, M. Fritz, and B. Schiele, Discovery of activity patterns using topic models, UbiComp, vol.8, pp.10-19, 2008.

T. Hunh, U. Blanke, and B. Schiele, Scalable recognition of daily activities with wearable sensors, International Symposium on Location-and Context-Awareness, p.11, 2007.

W. Jih, J. Y. Hsu, C. Wu, C. Liao, and S. Cheng, A multi-agent service framework for context-aware elder care, vol.14, p.15, 2006.

M. Joël, S. Dufour-kippelen, C. Duchêne, and M. Marmier, The long-term care system for the elderly in France. Centre for European Policy Studies, vol.22, p.77, 2010.

P. Kakria, N. Tripathi, and P. Kitipawang, A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors, International journal of telemedicine and applications, 2015.

M. N. Kamel-boulos, R. C. Lou, A. Anastasiou, C. D. Nugent, J. Alexandersson et al., Connectivity for healthcare and wellbeing management: examples from six european projects, Int. J. of environmental research and public health, vol.6, issue.7, pp.1947-1971, 2009.

D. Kang, K. Kang, H. Lee, E. Ko, and J. Lee, A systematic design tool of context aware system for ubiquitous healthcare service in a smart home, Future generation communication and networking, vol.2, p.15, 2007.

D. Kang, H. Lee, E. Ko, K. Kang, and J. Lee, A wearable context aware system for ubiquitous healthcare, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, p.15, 2006.

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler et al., Design guidelines for domain specific languages, vol.26, p.77, 2014.

S. Katz, Studies of illness in the aged. the index of adl: a standardized measure of biologic and psychologic function, JaMa, vol.185, p.18, 1963.

S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz, Progress in development of the index of adl, The gerontologist, vol.10, issue.1_Part_1, pp.20-30, 1970.

H. Kautz, L. Arnstein, G. Borriello, O. Etzioni, and D. Fox, An overview of the assisted cognition project, AAAI-2002 Workshop on Automation as Caregiver: The Role of Intelligent Technology in Elder Care, pp.6065-6080, 2002.

R. A. Keith, The functional independence measure: a new tool for rehabilitation, Advances in clinical rehabilitation, vol.2, pp.6-18, 1987.

A. M. Khan, Y. Lee, S. Lee, and T. Kim, Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis, 2010 5th international conference on future information technology, p.15, 2010.

E. Kim, S. Helal, and D. Cook, Human activity recognition and pattern discovery, IEEE Pervasive Computing, vol.9, issue.1, 2010.

J. Kim, H. Choi, H. Wang, N. Agoulmine, M. J. Deerv et al., Postech's u-health smart home for elderly monitoring and support, Int. Symp on World of Wireless Mobile and Multimedia Networks, vol.35, p.39, 2010.

T. Kosar, S. Bohra, and M. Mernik, Domain-specific languages: A systematic mapping study, Information and Software Technology, vol.71, p.27, 2016.

D. Kramer, J. C. Augusto, C. , and T. , Context-awareness to increase inclusion of people with ds in society, Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence, vol.4, 2014.

D. S. Kringos, W. G. Boerma, A. Hutchinson, and R. B. Saltman, Building primary care in a changing Europe. WHO Regional Office for Europe, 2015.

N. C. Krishnan, D. Colbry, C. Juillard, and S. Panchanathan, Real time human activity recognition using tri-axial accelerometers, Sensors, signals and information processing workshop, vol.15, pp.3337-3340, 2008.

N. Kushwaha, M. Kim, D. Y. Kim, and W. Cho, An intelligent agent for ubiquitous computing environments: smart home ut-agent, Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, p.17, 2004.

J. R. Kwapisz, G. M. Weiss, and S. A. Moore, Activity recognition using cell phone accelerometers, ACM SigKDD Explorations Newsletter, vol.12, issue.2, p.15, 2011.

P. Lalanda, C. Hamon, C. Escoffier, and T. Leveque, icasa, a development and simulation environment for pervasive home applications, Consumer Communications and Networking Conference, p.52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023545

P. Lalanda, J. A. Mccann, and A. Diaconescu, Autonomic computing, p.52, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854882

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury et al., A survey of mobile phone sensing, IEEE Communications magazine, vol.48, issue.9, pp.140-150, 2010.

M. P. Lawton and E. M. Brody, Assessment of older people: self-maintaining and instrumental activities of daily living, The gerontologist, vol.9, issue.3_Part_1, p.18, 1969.

D. Leake, A. Maguitman, and T. Reichherzer, Cases, context, and comfort: Opportunities for case-based reasoning in smart homes, Designing Smart Homes, p.16, 2006.

M. Lee, J. Kim, K. Kim, I. Lee, S. H. Jee et al., Physical activity recognition using a single tri-axis accelerometer, Proceedings of the world congress on engineering and computer science, vol.1, 2009.

M. Lee, A. M. Khan, and T. Kim, A single tri-axial accelerometerbased real-time personal life log system capable of human activity recognition and exercise information generation, Personal and Ubiquitous Computing, vol.15, issue.8, pp.887-898, 2011.

Y. Lee and W. Chung, Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring, Sensors and Actuators B: Chemical, vol.140, issue.2, pp.390-395, 2009.

T. Lemlouma, S. Laborie, R. , and P. , Toward a context-aware and automatic evaluation of elderly dependency in smart homes and cities, Int. Symp. on World of Wireless, Mobile and Multimedia Networks, vol.3, p.14, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839661

X. Li, X. Tao, W. Song, D. , and K. , Aocml: A domain-specific language for model-driven development of activity-oriented context-aware applications, Journal of Computer Science and Technology, vol.33, issue.5, p.75, 2018.

L. Liao, D. Fox, and H. Kautz, Extracting places and activities from gps traces using hierarchical conditional random fields, The International Journal of Robotics Research, vol.26, issue.1, pp.119-134, 2007.

L. Liao, D. J. Patterson, D. Fox, and H. Kautz, Behavior recognition in assisted cognition, Proceedings The AAAI-04 Workshop on Supervisory Control of Learning and Adaptive Systems, p.15, 2004.

K. Lima, E. R. Marques, J. Pinto, and J. B. Sousa, Dolphin: a task orchestration language for autonomous vehicle networks, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol.28, p.75, 2018.

Y. Liu, S. H. Zhu, G. H. Wang, F. Ye, and P. Z. Li, Validity and reliability of multiparameter physiological measurements recorded by the equivital lifemonitor during activities of various intensities, Journal of occupational and environmental hygiene, vol.10, issue.2, pp.78-85, 2013.

X. Long, B. Yin, and R. M. Aarts, Single-accelerometer-based daily physical activity classification, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.10, 2009.

C. Lu and L. Fu, Robust location-aware activity recognition using wireless sensor network in an attentive home, IEEE Trans. on Automation Science and Engineering, vol.6, issue.4, p.14, 2009.

P. Lukowicz, G. Pirkl, D. Bannach, F. Wagner, A. Calatroni et al., Recording a complex, multi modal activity data set for context recognition, 23th International Conference on Architecture of Computing Systems, pp.1-6, 2010.

W. Y. Lum and F. C. Lau, A context-aware decision engine for content adaptation, IEEE Pervasive computing, vol.1, issue.3, pp.41-49, 2002.

K. Lyytinen and Y. Yoo, Ubiquitous computing, Communications of the ACM, vol.45, issue.12, pp.63-96, 2002.

T. Maekawa, Y. Kishino, Y. Yanagisawa, and Y. Sakurai, Mimic sensors: battery-shaped sensor node for detecting electrical events of handheld devices, International Conference on Pervasive Computing, vol.12, p.13, 2012.

T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei et al., Object-based activity recognition with heterogeneous sensors on wrist, International Conference on Pervasive Computing, p.12, 2010.

F. I. Mahoney and D. W. Barthel, Functional evaluation: the barthel index: a simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Maryland state medical journal, vol.18, 1965.

L. Mainetti, L. Manco, L. Patrono, A. Secco, I. Sergi et al., An ambient assisted living system for elderly assistance applications, IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), vol.30, p.77, 2016.

P. Makris, D. N. Skoutas, and C. Skianis, A survey on context-aware mobile and wireless networking: On networking and computing environments' integration, IEEE communications surveys & tutorials, vol.15, issue.1, pp.362-386, 2013.

E. Mattila, I. Korhonen, and N. Saranummi, Mobile and personal health and wellness management systems. Pervasive computing in healthcare, pp.105-134, 2007.

U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, Activity recognition and monitoring using multiple sensors on different body positions, Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, p.15, 2006.

P. J. Mccullagh and J. C. Augusto, The internet of things: The potential to facilitate health and wellness, CEPIS Upgrade, vol.12, issue.1, pp.59-68, 2011.

T. Mcfadden and J. Indulska, Context-aware environments for independent living, Proceedings of the 3rd National Conference of Emerging Researchers in Ageing, vol.1, pp.6-8, 2004.

M. Mernik, J. Heering, and A. M. Sloane, When and how to develop domainspecific languages, ACM computing surveys (CSUR), vol.37, issue.4, p.37, 2005.

M. Mitchell, F. Sposaro, A. A. Wang, T. , and G. , Beat: Bio-environmental android tracking, 2011 IEEE Radio and Wireless Symposium, p.40, 2011.

M. C. Mozer, R. H. Dodier, M. Anderson, L. Vidmar, R. Cruickshank et al., The neural network house: An overview. Current trends in connectionism, vol.15, pp.371-380, 1995.

R. Mulero, A. Almeida, G. Azkune, P. Abril-jiménez, M. T. Waldmeyer et al., An iot-aware approach for elderlyfriendly cities, IEEE Access, vol.6, p.32, 2018.

B. Najafi, T. Khan, and J. Wrobel, Laboratory in a box: wearable sensors and its advantages for gait analysis, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.40, 2011.

F. Nawaz, N. K. Janjua, and O. K. Hussain, Perceptus: Predictive complex event processing and reasoning for iot-enabled supply chain. Knowledge-Based Systems, vol.27, p.77, 2019.

N. Noury and T. Hadidi, Computer simulation of the activity of the elderly person living independently in a health smart home. Computer methods and programs in biomedicine, vol.108, pp.1216-1228, 2012.

. Ocde, Health at a Glance, vol.9, p.75, 2017.

J. D. Olden and D. A. Jackson, Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks, Ecological modelling, vol.154, issue.1-2, pp.135-150, 2002.

C. Orwat, A. Graefe, and T. Faulwasser, Towards pervasive computing in health care-a literature review, BMC medical informatics and decision making, vol.8, issue.1, pp.26-35, 2008.

A. Padovitz, S. W. Loke, and A. Zaslavsky, The ecora framework: A hybrid architecture for context-oriented pervasive computing, Pervasive and mobile computing, vol.4, issue.2, pp.182-215, 2008.

J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola et al., Activity classification using realistic data from wearable sensors, IEEE Transactions on information technology in biomedicine, vol.10, issue.1, p.11, 2006.

S. Patel, C. Mancinelli, J. Healey, M. Moy, and P. Bonato, Using wearable sensors to monitor physical activities of patients with copd: A comparison of classifier performance, Sixth International Workshop on Wearable and Implantable Body Sensor Networks, p.11, 2009.

T. Patkos, D. Plexousakis, A. Chibani, A. , and Y. , An event calculus production rule system for reasoning in dynamic and uncertain domains, Theory and Practice of Logic Programming, vol.16, issue.3, p.39, 2016.

J. Pavelka, On fuzzy logic i, ii, iii, Zeit. Math. Logik u. Grundl. Math, vol.25, pp.447-464, 1979.

M. G. Pecht, A prognostics and health management roadmap for information and electronics-rich systems, IEICE ESS Fundamentals Review, vol.3, issue.4, 2010.

F. Pecora, M. Cirillo, F. Dell'osa, J. Ullberg, and A. Saffiotti, A constraintbased approach for proactive, context-aware human support, J. of Ambient Intelligence and Smart Environments, vol.4, issue.4, p.39, 2012.

M. Pfeiffer and J. Pichler, A comparison of tool support for textual domainspecific languages, Proceedings of the 8th OOPSLA Workshop on Domain-Specific Modeling, pp.1-7, 2008.

M. Raîche, R. Hébert, M. Dubois, and N. Dubuc, Yearly transitions of disability profiles in older people living at home. Archives of, Gerontology and Geriatrics, vol.55, issue.2, p.75, 2012.

D. Randell, M. Witkowski, and M. Shanahan, From images to bodies: Modelling and exploiting spatial occlusion and motion parallax, IJCAI, vol.35, p.75, 2001.

D. A. Randell, Z. Cui, and A. G. Cohn, A spatial logic based on regions and connection, vol.35, p.77, 1992.

A. Ranganathan and R. H. Campbell, An infrastructure for context-awareness based on first order logic, Personal and Ubiquitous Computing, vol.7, issue.6, pp.353-364, 2003.

M. J. Rantz, M. Skubic, R. J. Koopman, L. Phillips, G. L. Alexander et al., Using sensor networks to detect urinary tract infections in older adults, 2011 IEEE 13th International Conference on e-Health Networking, p.15, 2011.

P. Rashidi and A. Mihailidis, A survey on ambient-assisted living tools for older adults, IEEE journal of biomedical and health informatics, vol.17, issue.3, p.16, 2013.

N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, Activity recognition from accelerometer data, Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence, vol.3, p.15, 2005.

A. Reiss, G. Hendeby, and D. Stricker, A competitive approach for human activity recognition on smartphones, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013, vol.12, p.13, 2013.

S. Ribari? and B. Dalbelo-ba?i?, Modelling crisp and fuzzy qualitative temporal relations, Journal of Information and Organizational Sciences, vol.25, issue.2, p.77, 2001.

D. Riboni and C. Bettini, Context-aware activity recognition through a combination of ontological and statistical reasoning, International Conference on Ubiquitous Intelligence and Computing, p.16, 2009.

F. Rivera-illingworth, V. Callaghan, and H. Hagras, A neural network agent based approach to activity detection in ami environments, IEEE international workshop on intelligent environments, vol.15, pp.92-99, 2005.

R. Rodrigues, M. Huber, and G. Lamura, Facts and figures on healthy ageing and long-term care, European Centre for Social Welfare Policy and Research, issue.8, 2012.

D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster et al., Collecting complex activity datasets in highly rich networked sensor environments, Seventh international conference on networked sensing systems (INSS), p.12, 2010.

E. Roldan, S. Neágny, J. M. Le-lann, and G. Cortes, Constraint satisfaction problem for case-based reasoning adaptation: application in process design, In Computer Aided Chemical Engineering, vol.28, p.17, 2010.

A. Roy, S. D. Bhaumik, A. Bhattacharya, K. Basu, D. J. Cook et al., Location aware resource management in smart homes, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, p.15, 2003.

U. Rutishauser, J. Joller, D. , and R. , Control and learning of ambience by an intelligent building, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol.35, issue.1, pp.121-132, 2005.

D. Saha and A. Mukherjee, Pervasive computing: a paradigm for the 21st century, Computer, vol.36, issue.3, pp.25-31, 2003.

P. E. Santos, M. F. Martins, V. Fenelon, F. G. Cozman, and H. M. Dee, Probabilistic self-localisation on a qualitative map based on occlusions, J. of Experimental & Theoretical Artificial Intelligence, vol.28, issue.5, p.39, 2016.

M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE Personal communications, vol.8, issue.4, pp.10-17, 2001.

M. Schwenk, J. Mohler, C. Wendel, M. Fain, R. Taylor-piliae et al., Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the arizona frailty cohort study, Gerontology, vol.61, issue.3, pp.258-267, 2015.

M. Shanahan, The event calculus explained, Artificial intelligence today, vol.33, p.77, 1999.

E. Shimokawara, T. Kaneko, T. Yamaguchi, M. Mizukawa, and N. Matsuhira, Estimation of basic activities of daily living using zigbee 3d accelerometer sensor network, ICBAKE, vol.3, p.14, 2013.

V. Shnayder, B. Chen, K. Lorincz, T. R. Fulford-jones, W. et al., Sensor networks for medical care, p.40, 2005.

R. J. Siegert and L. Turner-stokes, Psychometric evaluation of the northwick park dependency scale, Journal of rehabilitation medicine, vol.42, issue.10, pp.936-943, 2010.

S. L. and L. M. , MySignals -eHealth and Medical IoT Development Platform, vol.40, p.77, 2019.

J. Sprinkle, M. Mernik, J. Tolvanen, and D. Spinellis, Guest editors' introduction: What kinds of nails need a domain-specific hammer?, IEEE software, vol.26, issue.4, pp.15-18, 2009.

V. Stanford, Using pervasive computing to deliver elder care, IEEE pervasive computing, vol.1, issue.1, pp.10-13, 2002.

V. Stankovski and J. Trnkoczy, Application of decision trees to smart homes, Designing smart homes, p.16, 2006.

M. Stikic, T. Huynh, K. Van-laerhoven, and B. Schiele, Adl recognition based on the combination of rfid and accelerometer sensing, 2008 second international conference on pervasive computing technologies for healthcare, p.12, 2008.

N. K. Suryadevara and S. C. Mukhopadhyay, Wireless sensor network based home monitoring system for wellness determination of elderly, IEEE Sensor Journal, vol.12, issue.6, p.14, 2012.

N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, and R. Rayudu, Forecasting the behavior of an elderly using wireless sensors data in a smart home, Engineering Applications of Artificial Intelligence, vol.26, issue.10, pp.2641-2652, 2013.

H. Takabi, M. Amini, J. , and R. , Enhancing role-based access control model through fuzzy relations, Third International Symposium on Information Assurance and Security, p.17, 2007.

E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright et al., Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor, p.15, 2007.

E. M. Tapia, S. S. Intille, and K. Larson, Activity recognition in the home using simple and ubiquitous sensors, International conference on pervasive computing, p.15, 2004.

L. Turner-stokes, S. Paul, W. , and H. , Efficiency of specialist rehabilitation in reducing dependency and costs of continuing care for adults with complex acquired brain injuries, Neurosurgery & Psychiatry, vol.77, issue.5, pp.634-639, 2006.

L. Turner-stokes, P. Tonge, K. Nyein, M. Hunter, S. Nielsona et al., The northwick park dependency score (npds): a measure of nursing dependency in rehabilitation, Clinical Rehabilitation, vol.12, issue.4, p.77, 1998.

A. Vainio, M. Valtonen, and J. Vanhala, Proactive fuzzy control and adaptation methods for smart homes, IEEE Intelligent Systems, vol.23, issue.2, pp.42-49, 2008.

A. Van-deursen and P. Klint, Domain-specific language design requires feature descriptions, Journal of Computing and Information Technology, vol.10, issue.1, pp.1-17, 2002.

A. Van-deursen, P. Klint, and J. Visser, Domain-specific languages: An annotated bibliography, ACM Sigplan Notices, vol.35, issue.6, pp.26-36, 2000.

L. Van-eenoo, H. Van-der-roest, G. Onder, H. Finne-soveri, V. Garms-homolova et al., Organizational home care models across europe: A cross sectional study, International journal of nursing studies, vol.77, issue.8, pp.39-45, 2018.

T. L. Van-kasteren, G. Englebienne, and B. J. Kröse, Hierarchical activity recognition using automatically clustered actions, International Joint Conference on Ambient Intelligence, vol.12, p.13, 2011.

U. Varshney, Pervasive healthcare, Computer, vol.36, issue.12, pp.138-140, 2003.

E. Vildjiounaite and S. Kallio, A layered approach to context-dependent user modelling, European Conference on Information Retrieval, pp.749-752, 2007.

T. Vogel, Model-driven engineering of self-adaptive software, p.26, 2018.

N. Volanschi, B. Serpette, A. Carteron, and C. Consel, A language for online state processing of binary sensors, applied to ambient assisted living, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol.2, p.75, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01947742

M. Wallace and G. Stamou, Towards a context aware mining of user interests for consumption of multimedia documents, Proceedings. IEEE International Conference on Multimedia and Expo, vol.1, p.16, 2002.

D. Wan and L. E. Taveras, The business of pervasive healthcare, Pervasive Computing in Healthcare, p.9, 2006.

Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer, Energyefficient continuous activity recognition on mobile phones: An activity-adaptive approach, 2012 16th international symposium on wearable computers, p.11, 2012.

K. Yatani and K. N. Truong, Bodyscope: a wearable acoustic sensor for activity recognition, Proceedings of the 2012 ACM Conference on Ubiquitous Computing, vol.12, p.13, 2012.

J. Ye, S. Dobson, and S. Mckeever, Situation identification techniques in pervasive computing: A review, Pervasive and mobile computing, vol.8, issue.1, pp.36-66, 2012.

B. Yuan, Context-aware real-time assistant architecture for pervasive healthcare, p.17, 2014.

B. Yuan and J. Herbert, Context-aware hybrid reasoning framework for pervasive healthcare. Personal and ubiquitous computing, vol.18, p.60, 2014.

L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-i, ii, iii. Information Science, vol.8, p.17, 1975.

L. A. Zadeh, Fuzzy logic and approximate reasoning, Synthese, vol.30, issue.3-4, pp.407-428, 1975.

M. Zeifman and K. Roth, Nonintrusive appliance load monitoring: Review and outlook, IEEE transactions on Consumer Electronics, vol.57, issue.1, pp.76-84, 2011.

J. Zhang, G. Song, H. Wang, and T. Meng, Design of a wireless sensor network based monitoring system for home automation, 2011 International Conference on Future Computer Sciences and Application, p.15, 2011.

H. Ziekow, C. Goebel, J. Strüker, and H. Jacobsen, The potential of smart home sensors in forecasting household electricity demand, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), p.15, 2013.