, Méthode Density-Based

M. Pressure-based-references, F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti et al., A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp.99-108, 1997.

L. Cambier, S. Heib, and S. Plot, The ONERA elsA CFD software: input from research and feedback from industry, vol.14, pp.159-174, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01293795

J. Chapelier, . De-la-llave, M. Plata, F. Renac, and E. Lamballais, Evaluation of a highorder discontinuous Galerkin method for the DNS of turbulent flows, Computer and Fluids, vol.95, pp.210-226, 2014.

M. De-la-llave-plata, V. Couaillier, C. Marmignon, M. C. Le-pape, M. Gazaix et al., Further developments in the multiblock hybrid CFD solver elsA-H, 2012.

R. Gardon and J. Akfirat, Heat transfer characteristics of impinging two-dimensional air jets, Journal of Heat Transfer, vol.88, pp.101-108, 1966.

R. Gardon and J. C. Akfirat, The role of turbulence in determining the heat-transfer characteristics of impinging jets, International Journal of Heat and Mass Transfer, vol.8, pp.1261-1272, 1965.

F. Gori and L. Bossi, On the cooling effect of an air jet along the surface of a cylinder, International Communications in Heat and Mass Transfer, vol.27, pp.667-676, 2000.

R. Hartmann and P. Houston, An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations, Journal of Computational Physics, vol.227, pp.9670-9685, 2008.

K. Jambunathan, E. Lai, M. A. Moss, and B. L. Button, A review of heat transfer data for single circular jet impingement, International Journal of Heat and Fluid Flow, vol.13, pp.106-115, 1992.

A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta stepping schemes, 1981.

F. J. Kelecy, Coupling momentum and continuity increases CFD robustness, ANSYS Advantage, vol.II, issue.2, pp.49-51, 2008.

C. S. Mcdaniel and B. W. Webb, Slot jet impingement heat transfer from circular cylinders, International Journal of Heat and Mass Transfer, vol.43, pp.1975-1985, 2000.

H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces, Advances in Heat Transfer, vol.13, pp.1-60, 1977.

F. Renac, . De-la-llave, M. Plata, E. Martin, J. Chapelier et al., Aghora: a high-order DG solver for turbulent flow simulations, IDIHOM: Industrialization of High-Order Methods -A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol.128, pp.315-335, 2014.

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, pp.357-372, 1981.

D. Singh, B. Premachandran, and S. Kohli, Experimental and numerical investigation of jet impingement cooling of a circular cylinder, International Journal of Heat and Mass Transfer, vol.60, pp.672-688, 2013.

D. Singh, B. Premachandran, and S. Kohli, Circular air jet impingement cooling of a circular cylinder with flow confinement, International Journal of Heat and Mass Transfer, vol.91, pp.969-989, 2015.

D. Singh, B. Premachandran, and S. Kohli, Effect of nozzle shape on jet impingement heat transfer from a circular cylinder, International Journal of Thermal Sciences, vol.96, pp.45-69, 2015.

X. L. Wang, D. Motala, T. J. Lu, S. J. Song, and T. Kim, Heat transfer of a circular impinging jet on a circular cylinder in crossflow, International Journal of Thermal Sciences, vol.78, pp.1-8, 2014.

N. Zuckerman and N. Lior, Jet impingement heat transfer: physics, correlations, and numerical modeling, Advances in Heat Transfer, vol.39, pp.565-631, 2006.

N. Zuckerman and N. Lior, Corresponding author Eric Schall can be contacted at: eric.schall@univ-pau.fr For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight, Journal of Thermophysics and Heat Transfer, vol.21, issue.3, p.7, 2007.

, Mr Nicolas Chauchat At, vol.02, p.114, 2016.

A. B. Publications,

, Rutherford Aris. Vectors, tensors and the basic equations of fluid mechanics, 2012.

. Lawrence-e-malvern, Introduction to the Mechanics of a Continuous Medium. Number Monograph, 1969.

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, vol.12, pp.451-512, 2003.

R. Becker, K. Gokpi, E. Schall, and D. Trujillo, Comparison of hierarchical and nonhierarchical error indicators for adaptive mesh refinement for the Euler equations. Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering, vol.227, issue.6, pp.933-943, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00766918

F. Bassi, S. Rebay, and M. Savini, Discontinuous finite element Euler solutions on unstructured adaptive grids, Thirteenth International Conference on Numerical Methods in Fluid Dynamics, pp.245-249, 1993.

P. Batten, N. Clarke, C. Lambert, and D. M. Causon, On the choice of wavespeeds for the HLLC Riemann solver, SIAM Journal on Scientific Computing, vol.18, issue.6, pp.1553-1570, 1997.

S. Tu and S. Aliabadi, A slope limiting procedure in discontinuous galerkin finite element method for gasdynamics applications, International Journal of Numerical Analysis and Modeling, vol.2, issue.2, pp.163-178, 2005.

L. Cambier, S. Heib, and S. Plot, The ONERA elsA CFD software : input from research and feedback from industry, Mechanics & Industry, vol.14, issue.03, pp.159-174, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01293795

P. L. Roe, Characteristic-Based Schemes for the Euler Equations, Annual Review of Fluid Mechanics, vol.18, pp.337-365, 1986.

I. Mary and P. Sagaut, Large eddy simulation of flow around an airfoil near stall, AIAA journal, vol.40, issue.6, pp.1139-1145, 2002.

F. J. Kelecy, Coupling momentum and continuity increases CFD robustness, AN-SYS advantage, vol.II, 2008.

S. Patankar and D. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol.15, issue.10, pp.1787-1806, 1972.

R. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics, vol.62, issue.1, pp.40-65, 1986.

L. E. Fraenkel, On corner eddies in plane inviscid shear flow, Journal of Fluid Mechanics, vol.11, issue.3, pp.400-406, 1961.

H. Guillard, On the behavior of upwind schemes in the low Mach number limit. IV : P0 approximation on triangular and tetrahedral cells, Computers & Fluids, vol.38, issue.10, pp.1969-1972, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00871719

, Katate Mastsuka. I do like CFD, vol.1

S. Candel, Mécanique des fluides. Dunod, 1995.

F. Eleuterio and . Toro, Riemann solvers and numerical methods for fluid dynamics : a practical introduction, 2009.

H. C. Yee, M. Vinokur, and M. J. Djomehri, Entropy splitting and numerical dissipation, Journal of Computational Physics, vol.162, issue.1, pp.33-81, 2000.

P. R. Lyra and K. Morgan, A review and comparative study of upwind biased schemes for compressible flow computation. Part III : Multidimensional extension on unstructured grids, Archives of Computational Methods in Engineering, vol.9, issue.3, pp.207-256, 2002.

A. Jameson, W. Schmidt, and E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, 1981.

M. Mock, Systems of conservation laws of mixed type, Journal of Differential Equations, vol.37, issue.1, pp.70-88, 1980.

S. K. Godunov, An interesting class of quasilinear systems, Sov.Math.Dokl, vol.2, pp.947-949, 1961.

G. Hauke, J. R. Thomas, and . Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.153, issue.1, pp.1-44, 1998.

T. J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, An introduction to recent developments in theory and numerics for conservation laws, pp.195-285, 1999.

T. J. Barth, Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension, Discontinuous Galerkin Methods, pp.63-75, 2000.

L. Pesch, J. J. Van-der, and . Vegt, A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids, Journal of Computational Physics, vol.227, issue.11, pp.5426-5446, 2008.

C. Nicolas, S. Eric, M. Mathieu, M. De-la, L. Plata et al., Cooling of a heating cylinder by confined impacting air jets, International Journal of Numerical Methods for Heat & Fluid Flow, vol.26, issue.7, pp.2013-2032, 2016.

C. Nicolas, S. Eric, L. Nicolas, and G. Leroy, A contribution to the way of the all-Mach number in aerodynamics, 3AF international conference on Applied Aerodynamics, 2015.

C. Nicolas, S. Eric, M. Mathieu, M. De-la, L. Plata et al., Study of a cooling device of confined impacting air jets on a heating cylinder, 3AF international conference on Applied Aerodynamics, 2015.

S. Eric, C. Nicolas, and M. Mathieu, Moving toward green aircraft : More onboard electricity with an efficient cooling system. In the 28TH international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems, 2015.

, Un système d'équations aux dérivées partielles (EDP) provenant des bilans de conservation (masse, quantité de mouvement et énergie) est mis en place pour permettre la détermination des quatre inconnues. Il existe toute une panoplie d'algorithmes numériques capables de résoudre le système d'EDP toutefois séparée en deux en raison de l'hypothèse de la compressibilité du fluide, incompressible ou compressible. La nature du système d'EDP est différente dans les deux cas et il n'existe pas de méthode commune capable de les résoudre, il existe ainsi deux types de logiciel différents pour résoudre les écoulements incompressibles d'une

. Ainsi, utilisation d'un seul logiciel pour résoudre n'importe quel type d'écoulement sans avoir à apprécier au préalable l'hypothèse liée à la compressibilité du fluide au risque de se tromper serait très apprécié. Mots clés : Simulation numérique