R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics : theory and application to non-spherical stars, Monthly notices of the royal astronomical society, vol.181, issue.3, pp.375-389, 1977.

R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies : application to particulate flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.

J. Gray, J. Monaghan, and R. Swift, SPH elastic dynamics, Computer methods in applied mechanics and engineering, vol.190, issue.49, pp.6641-6662, 2001.

I. Had?i?, J. Hennig, M. Peri?, and Y. Xing-kaeding, Computation of flow-induced motion of floating bodies, Applied mathematical modelling, vol.29, issue.12, pp.1196-1210, 2005.

C. Kassiotis, A. Ibrahimbegovic, and H. Matthies, Partitioned solution to fluid-structure interaction problem in application to free-surface flows, European Journal of Mechanics-B/Fluids, vol.29, issue.6, pp.510-521, 2010.

I. Nistor, D. Palermo, A. Cornett, and T. Al-faesly, Experimental and numerical modeling of tsunami loading on structures, Coastal Engineering Proceedings, vol.1, issue.32, 2011.

C. S. Peskin, Flow patterns around heart valves : a numerical method, Journal of computational physics, vol.10, issue.2, pp.252-271, 1972.

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, pp.479-517, 2002.

P. Randles and L. Libersky, Smoothed particle hydrodynamics : some recent improvements and applications, Computer methods in applied mechanics and engineering, vol.139, issue.1, pp.375-408, 1996.

T. Randrianarivelo, G. Pianet, S. Vicent, and J. Caltagirone, Numerical modelling of solid particles motion using a new penalty method, Int. J. Numer. Meth. Fluids, vol.47, pp.1245-1251, 2005.

T. Richter and T. Wick, Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41, pp.2633-2642, 2010.

J. Ritz and J. Caltagirone, A numerical continuous model for the hydrodynamics of fluid particle systems, International Journal for Numerical Methods in Fluids, vol.30, issue.8, pp.1067-1090, 1999.

A. Sarthou, S. Vincent, J. Caltagirone, and P. Angot, Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects, International Journal for Numerical Methods in Fluids, vol.56, issue.8, pp.1093-1099, 2008.

M. Cruchaga, D. Celentano, P. Breitkopf, P. Villon, and A. Rassineux, A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows, International journal for numerical methods in engineering, vol.66, issue.13, pp.2035-2063, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01994255

M. Cruchaga, D. Celentano, P. Breitkopf, P. Villon, and A. Rassineux, A surface remeshing technique for a Lagrangian description of 3D two-fluid flow problems, International journal for numerical methods in fluids, vol.63, issue.4, pp.415-430, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00780387

M. A. Cruchaga, C. M. Muñoz, and D. J. Celentano, Simulation and experimental validation of the motion of immersed rigid bodies in viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.33, pp.2823-2835, 2008.

M. A. Cruchaga and E. Oñate, A finite element formulation for incompressible flow problems using a generalized streamline operator, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1, pp.49-67, 1997.

M. A. Cruchaga, R. S. Reinoso, M. A. Storti, D. J. Celentano, and T. E. Tezduyar, Finite element computation and experimental validation of sloshing in rectangular tanks, Computational Mechanics, vol.52, issue.6, pp.1301-1312, 2013.

P. Lubin, S. Vincent, S. Abadie, and J. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coastal engineering, vol.53, issue.8, pp.631-655, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00294092

A. Ten-cate, C. Nieuwstad, J. Derksen, and H. Van-den-akker, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Physics of Fluids, vol.14, issue.11, pp.4012-4025, 1994.

). .. , , vol.87

. .. Étude, 100 4.3.1 Ballottement sans système oscillant : cas de référence

.. .. Conclusion,

. .. Bibliographie-du-chapitre,

A. Gedikli and M. Ergüven, Seismic analysis of a liquid storage tank with a baffle, Journal of Sound and Vibration, vol.223, issue.1, pp.141-155, 1999.

K. Kwok, Damping and control of structures subjected to dynamic loading. Structures Subjected to Dynamic Loading, 1991.

P. Lubin, S. Vincent, S. Abadie, and J. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coastal engineering, vol.53, issue.8, pp.631-655, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00294092

A. Maleki and M. Ziyaeifar, Sloshing damping in cylindrical liquid storage tanks with baffles, Journal of Sound and Vibration, vol.311, issue.1, pp.372-385, 2008.

V. Modi and A. Akinturk, An efficient liquid sloshing damper for control of wind-induced instabilities, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, issue.12, pp.1907-1918, 2002.

P. Panigrahy, U. Saha, and D. Maity, Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks, Ocean Engineering, vol.36, issue.3, pp.213-222, 2009.

. .. Étude-d'un-système-houlomoteur, 112 5.2.3 Étude du rendement par la simulation numérique

.. .. Conclusion,

. .. Bibliographie-du-chapitre,

, 12 -Réponse de l'oscillateur libre, initialement écarté de sa position d'équilibre, FIGURE 5

, t=0,513s. (d) t=0, p.885

, 13 -Instantanés du mouvement d'oscillateur libre, initialement écart de sa position d'équilibre, FIGURE 5

, Étude d'un système houlomoteur FIGURE 5.17 -Réponse du batteur à l'excitation de la houle régulière imposée

P. and =. , La figure 5.18 donne le puissance instantanée récupérée par le système houlomoteur en fonction du temps

, Le rendement du système se calcule en faisant le rapport entre l'énergie récupérée et l'énergie disponible La formule utilisée est présentée dans l

, Bibliographie du chapitre

V. Baudry, A. Babarit, and A. Clément, Développement d'un outil d'évaluation du rendement des dispositifs D2 de type batteur inversé, 2015.

, Les énergies marines : une nouvelle source d'énergie renouvelable pour une production d'électricité sûre et sans CO2, EDF, 2008.

R. Gomes, M. Lopes, J. Henriques, L. Gato, and A. Falcão, The dynamics and power extraction of bottom-hinged plate wave energy converters in regular and irregular waves, Ocean Engineering, vol.96, pp.86-99, 2015.

Z. Hafsia, M. B. Hadj, H. Lamloumi, and K. Maalel, Internal inlet for wave generation and absorption treatment, Coastal Engineering, vol.56, issue.9, pp.951-959, 2009.

L. Méhauté and B. , Progressive wave absorber, Journal of Hydraulic Research, vol.10, issue.2, pp.153-169, 1972.

P. Lin, P. L. Liu, and .. , Internal wave-maker for Navier-Stokes equations models, Journal of waterway, port, coastal, and ocean engineering, vol.125, issue.4, pp.207-215, 1999.

D. Sarkar, E. Renzi, and F. Dias, Wave farm modelling of oscillating wave surge converters, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.470, p.20140118, 2014.

. .. Conclusion,

, Nous pensons qu'il serait intéressant d'approfondir cette étude afin d'optimiser les paramètres de l'oscillateur (c.-à-d. m, k et c) en fonction des caractéristiques du réservoir (c.-à-d. L et H) et de la fréquence de l'excitation extérieure. Il serait par exemple intéressant d'arriver à introduire un déphasage entre le mouvement de la surface libre et celui du système d'amortissement afin d'obtenir une dissipation d'énergie plus rapide et plus importante. Faute de temps, dans cette thèse nous nous sommes concentrés sur l'influence de l'inertie de l'oscillateur. Les premiers résultats obtenus laissent penser que ces deux caractéristiques jouent un rôle important mais il

, En effet, nous pourrions par exemple nous servir des données de houle récoltées par la bouée que nous avons au large de la côte basque pour étudier les possibilités de mise en place de systèmes houlomoteurs oscillants sur nos côtes. Il serait également intéressant de comparer les résultats obtenus à des calculs potentiels afin de quantifier la dissipation introduite par les tourbillons. D'autre part, comme nous l'avons vu un peu plus haut, la résolution des problèmes au niveau des points triples sera une avancée majeure vis à vis de l'étude des systèmes houlomoteurs. En effet, un grand nombre de ces système n'étant pas totalement immergés, Enfin les dernières perspectives envisagées sont relatives à l'étude des systèmes houlomoteurs oscillants. Dans un premier temps nous souhaiterions étudier le rendement et la survivabilité de tels systèmes en modifiant la houle incidente

S. Abadie, D. Morichon, S. Grilli, and S. Glockner, Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model, Coastal Engineering, vol.57, issue.9, pp.779-794, 2010.

C. Altomare, A. Crespo, B. Rodgers, J. Dominguez, X. Gironella et al., Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics, Computers and Structures, vol.130, pp.34-45, 2014.

P. Angot, Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows, Mathematical methods in the applied sciences, vol.22, issue.16, pp.1395-1412, 1999.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

F. D. Antonio, Wave energy utilization : A review of the technologies, Renewable and sustainable energy reviews, vol.14, issue.3, pp.899-918, 2010.

T. Arikawa, M. Sato, K. Shimosako, I. Hasegawa, G. Yeom et al., Failure Mechanism of Kamaishi Breakwaters Due to the Great East Japan Earthquake Tsunami, Coastal Engineering Proceedings, vol.1, issue.33, p.16, 2012.

E. Arquis and J. Caltagirone, Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux : applicationa la convection naturelle, CR Acad. Sci. Paris II, vol.299, pp.1-4, 1984.

V. Baudry, A. Babarit, and A. Clément, Développement d'un outil d'évaluation du rendement des dispositifs D2 de type batteur inversé, 2015.

J. Caltagirone and S. Vincent, Sur une méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes, Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics, vol.329, issue.8, pp.607-613, 2001.

M. Cruchaga, D. Celentano, P. Breitkopf, P. Villon, and A. Rassineux, A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows, International journal for numerical methods in engineering, vol.66, issue.13, pp.2035-2063, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01994255

M. Cruchaga, D. Celentano, P. Breitkopf, P. Villon, and A. Rassineux, A surface remeshing technique for a Lagrangian description of 3D two-fluid flow problems, International journal for numerical methods in fluids, vol.63, issue.4, pp.415-430, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00780387

M. A. Cruchaga, D. J. Celentano, and T. E. Tezduyar, A Numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces, International journal for numerical methods in fluids, vol.54, issue.6-8, pp.1021-1030, 2007.

M. A. Cruchaga, C. M. Muñoz, and D. J. Celentano, Simulation and experimental validation of the motion of immersed rigid bodies in viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.33, pp.2823-2835, 2008.

M. A. Cruchaga and E. Oñate, A finite element formulation for incompressible flow problems using a generalized streamline operator, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1, pp.49-67, 1997.

M. A. Cruchaga, R. S. Reinoso, M. A. Storti, D. J. Celentano, and T. E. Tezduyar, Finite element computation and experimental validation of sloshing in rectangular tanks, Computational Mechanics, vol.52, issue.6, pp.1301-1312, 2013.

B. J. Daly, Numerical Study of Two Fluid Rayleigh-Taylor Instability, Physics of Fluids, vol.10, issue.2, pp.297-307, 1958.

B. J. Daly, Numerical study of the effect of surface tension on interface instability, Physics of Fluids, vol.12, pp.1340-1354, 1958.

R. Donea, S. Giuliani, and J. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Computer methods in applied mechanics and engineering, vol.33, issue.1, pp.689-723, 1982.

B. Drew, A. Plummer, and M. N. Sahinkaya, A review of wave energy converter technology, Proceedings of the Institution of Mechanical Engineers, vol.223, pp.887-902, 2009.

M. Duval, Etude du déferlement d'une onde de Stokes et de la dissipation associée par simulation directe, 2007.

, Les énergies marines : une nouvelle source d'énergie renouvelable pour une production d'électricité sûre et sans CO2, EDF, 2008.

M. Fortin and R. Glowinski, Méthodes de lagrangien augmenté : applications à la résolution numérique de problèmes aux limites, 1982.

A. Gedikli and M. Ergüven, Seismic analysis of a liquid storage tank with a baffle, Journal of Sound and Vibration, vol.223, issue.1, pp.141-155, 1999.

R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics : theory and application to non-spherical stars, Monthly notices of the royal astronomical society, vol.181, issue.3, pp.375-389, 1977.

R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies : application to particulate flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.

R. Gomes, M. Lopes, J. Henriques, L. Gato, and A. Falcão, The dynamics and power extraction of bottom-hinged plate wave energy converters in regular and irregular waves, Ocean Engineering, vol.96, pp.86-99, 2015.

J. Gray, J. Monaghan, and R. Swift, SPH elastic dynamics, Computer methods in applied mechanics and engineering, vol.190, issue.49, pp.6641-6662, 2001.

I. Had?i?, J. Hennig, M. Peri?, and Y. Xing-kaeding, Computation of flow-induced motion of floating bodies, Applied mathematical modelling, vol.29, issue.12, pp.1196-1210, 2005.

Z. Hafsia, M. B. Hadj, H. Lamloumi, and K. Maalel, Internal inlet for wave generation and absorption treatment, Coastal Engineering, vol.56, issue.9, pp.951-959, 2009.

F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of fluids, vol.8, issue.12, p.2182, 1965.

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, vol.39, issue.1, pp.201-225, 1981.

C. Kassiotis, A. Ibrahimbegovic, and H. Matthies, Partitioned solution to fluid-structure interaction problem in application to free-surface flows, European Journal of Mechanics-B/Fluids, vol.29, issue.6, pp.510-521, 2010.

K. Kwok, Damping and control of structures subjected to dynamic loading. Structures Subjected to Dynamic Loading, 1991.

J. Larocque, Modélisation et simulation numérique d'écoulements incompressibles turbulents diphasiques à phases non miscibles : application à l'interaction d'un jet turbulent avec une surface libre dans une cavité, vol.1, 2008.

L. Méhauté and B. , Progressive wave absorber, Journal of Hydraulic Research, vol.10, issue.2, pp.153-169, 1972.

M. Lesieur, EDP sciences, 2013.

P. Lin, P. L. Liu, and .. , Internal wave-maker for Navier-Stokes equations models, Journal of waterway, port, coastal, and ocean engineering, vol.125, issue.4, pp.207-215, 1999.

P. Lubin, Simulation des Grandes Echelles appliquée au déferlement plongeant des vagues, 2004.

P. Lubin, S. Vincent, S. Abadie, and J. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves, Coastal engineering, vol.53, issue.8, pp.631-655, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00294092

A. Maleki and M. Ziyaeifar, Sloshing damping in cylindrical liquid storage tanks with baffles, Journal of Sound and Vibration, vol.311, issue.1, pp.372-385, 2008.

V. Modi and A. Akinturk, An efficient liquid sloshing damper for control of wind-induced instabilities, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, issue.12, pp.1907-1918, 2002.

I. Nistor, D. Palermo, A. Cornett, and T. Al-faesly, Experimental and numerical modeling of tsunami loading on structures, Coastal Engineering Proceedings, vol.1, issue.32, 2011.

P. Panigrahy, U. Saha, and D. Maity, Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks, Ocean Engineering, vol.36, issue.3, pp.213-222, 2009.

S. Patankar, Numerical heat transfer and fluid flow, 1980.

C. S. Peskin, Flow patterns around heart valves : a numerical method, Journal of computational physics, vol.10, issue.2, pp.252-271, 1972.

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, pp.479-517, 2002.

G. Pianet, S. Vincent, J. Leboi, J. Caltagirone, and M. Anderhuber, Simulating compressible gas bubbles with a smooth volume tracking 1-fluid method, International Journal of Multiphase Flow, vol.36, issue.4, pp.273-283, 2010.

P. Randles and L. Libersky, Smoothed particle hydrodynamics : some recent improvements and applications, Computer methods in applied mechanics and engineering, vol.139, issue.1, pp.375-408, 1996.

T. Randrianarivelo, G. Pianet, S. Vicent, and J. Caltagirone, Numerical modelling of solid particles motion using a new penalty method, Int. J. Numer. Meth. Fluids, vol.47, pp.1245-1251, 2005.

T. Richter and T. Wick, Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.41, pp.2633-2642, 2010.

J. Ritz and J. Caltagirone, A numerical continuous model for the hydrodynamics of fluid particle systems, International Journal for Numerical Methods in Fluids, vol.30, issue.8, pp.1067-1090, 1999.

D. Sarkar, E. Renzi, and F. Dias, Wave farm modelling of oscillating wave surge converters, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.470, p.20140118, 2014.

A. Sarthou, S. Vincent, J. Caltagirone, and P. Angot, Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects, International Journal for Numerical Methods in Fluids, vol.56, issue.8, pp.1093-1099, 2008.

A. Ten-cate, C. Nieuwstad, J. Derksen, and H. Van-den-akker, Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Physics of Fluids, vol.14, issue.11, pp.4012-4025, 1994.

C. Veeramani, P. D. Minev, and K. Nandakumar, A fictitious domain formulation for flows with rigid particles : A non-Lagrange multiplier version, Journal of Computational Physics, vol.224, issue.2, pp.867-879, 2007.

S. Vincent, T. Randrianarivelo, G. Pianet, and J. Caltagirone, Local penalty methods for flows interacting with moving solids at high Reynolds numbers, Computers and Fluids, vol.36, pp.902-913, 2007.

Y. Yu and Y. Li, Reynolds-Averaged Navier-Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system, Computers & Fluids, vol.73, pp.104-114, 2013.

Z. Yu, A DLM/FD method for fluid/flexible-body interactions, Journal of computational physics, vol.207, issue.1, pp.1-27, 2005.