

Fixed-bed reactors for exothermic reactions: A qualitative relation between start-up time and traveling waves velocity

Axel Fache, Frédéric Marias, Marco Castaldi, Michael Lugo-Pimentel, Yegor Nikitin, Tasnuva Moutushi

► To cite this version:

Axel Fache, Frédéric Marias, Marco Castaldi, Michael Lugo-Pimentel, Yegor Nikitin, et al.. Fixedbed reactors for exothermic reactions: A qualitative relation between start-up time and traveling waves velocity. Chemical Engineering Science, 2021, 235, pp.116504. 10.1016/j.ces.2021.116504 . hal-03695658

HAL Id: hal-03695658 https://univ-pau.hal.science/hal-03695658

Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	Fixed-bed reactors for exothermic reactions: a qualitative relation between		
2	start-up time and traveling waves velocity.		
3			
4	Axel Fache, Laboratoire de Thermique Energétique et Procédés – IPRA EA1932, Université de Pau et		
5	des Pays de l'Adour/E2S UPPA, 64000 Pau, France		
6			
7	Frédéric Marias, Laboratoire de Thermique Energétique et Procédés – IPRA EA1932, Université de		
8	Pau et des Pays de l'Adour/E2S UPPA, 64000 Pau, France		
9			
10	Marco J. Castaldi, City University of New York, City College, Dept. of Chemical Engineering, New York,		
11	NY, USA		
12			
13	Michael Lugo-Pimentel, City University of New York, City College, Dept. of Chemical Engineering, New		
14	York, NY, USA		
15			
16	Yegor Nikitin, City University of New York, City College, Dept. of Chemical Engineering, New York, NY,		
17	USA		
18			
19	Tasnuva Moutushi, City University of New York, City College, Dept. of Chemical Engineering, New		
20	York, NY, USA		
21			
าา			

23 Abstract

- 24 An experimental investigation of the reaction front movements upon reacting gas injection in a pre-
- 25 heated non-adiabatic fixed-bed methanation reactor is conducted. The relocation starts with a
- 26 backward movement of the front, whose maximal velocity turns out to be a linear function of the
- 27 temperature setpoint. The front then moves forward in response to the fact that the injected cold
- 28 gas cools down the bed in the upstream zone. The front stabilizes asymptotically in the downstream
- 29 (upstream, resp.) zone of the reactor after a characteristic time that is an increasing (decreasing,
- 30 resp.) function of the temperature setpoint, if the setpoint is below (above, resp.) a certain
- 31 threshold. This behavior is interpreted in terms of reaction wave velocity.

32

- 33 **Keywords:** fixed-bed reactor; start-up time; exothermic reaction; wave propagation; reaction front
- 34 velocity

36 Notations :

Symbol	Quantity, unit			
C_p	Constant pressure heat capacity, $J.kg^{-1}$			
Q _{ext}	\dot{Q}_{ext} Volumetric thermal power transferred from the external medium to the reactor, $W.m_{medium}^{-3}$			
\dot{Q}_{reac} Volumetric power released by the reaction (exothermicity), $W.m_{medium}^{-3}$				
\dot{Q}_{sens} Volumetric power advection due to gas movement, $W. m_{medium}^{-3}$				
ŕ				
Т				
t	t time, s			
T _{ext}	T_{ext} Temperature of the external medium (furnace), °C			
<i>T_{set}</i> Setpoint temperature, ° <i>C</i>				
T_{thres} Threshold setpoint temperature, °C				
$T_{1/2}$				
v_{chem} Chemically-induced wave velocity, $m. s^{-1}$				
v_{ext} Wave velocity due to the heat exchange with the external medium (furnace),				
v_{gas} Gas interstitial velocity , $m. s^{-1}$				
v_{hot} Hotspot velocity, $m. s^{-1}$				
$v_{hot/T}$ Hotspot velocity, relative to an isothermal point, $m. s^{-1}$				
v_T Isothermal point velocity, m. s ⁻¹				
v_{therm}				
Ζ	Axial location, m			
	Greek letters			
$\Delta_r H$	Reaction enthalpy, $J.mol^{-1}$			
δX Small element of quantity X (> 0 by default)				
ρ	Density, $kg.m_{medium}^{-3}$			
τ	Characteristic time of the equivalent exponential function, s			
	Subscript			
ad	Adiabatic			
front	Relative to the reaction front (generic for isothermal point or hotspot)			
hot	Hotspot			
medium	Relative to the reaction medium {porous solid + gas}			
set	At the same temperature as the setpoint			
Т	For a point whose temperature is T (isothermal point in Lagrangian description)			
	Superscript			
min	When the front reaches its lower axial position.			
8	Asymptotic value			

39 **1. Introduction**

40 **1.1.General context**

41 The transient behavior of fixed-bed catalytic reactors dedicated to exothermic reactions is a subject 42 of interest in many regards [1], whether the reactor is intended to complete the reaction dynamically 43 (e.g. methanation reactors dedicated to power-to-gas [2, 3]), or not (safety issues after accidental 44 perturbations of the operation conditions, or normal start-up of the reactor [4]). Due to the 45 difference between the characteristic time of the gas movement through the reactor and the 46 characteristic time of the thermal phenomena, transient behavior cannot be addressed as a 47 succession of quasi steady states. Counter-intuitive phenomena can take place. Wrong-way behavior 48 [5], for example, consists in a transient variation of local and global quantities (temperature, reaction 49 rate, chemical yield, etc) that spontaneously reverses before stabilizing asymptotically, further to a 50 dynamic perturbation in the operation conditions (e.g. inlet gas composition, flow rate or 51 temperature). Many previous studies have examined the response of a reactor upon all sorts of such 52 perturbations [6-10]. 53 One way to apprehend the transient behavior of a reactor is to think in terms of waves that 54 propagate in the downstream or upstream direction. This approach constitutes a powerful 55 theoretical tool to understand and predict phenomena such as ignition point relocation, extinction, 56 wrong-way behavior or transition between multiple steady states [11-17]. It can be used to describe 57 how the periodic variation of operation parameters can be amplified in a similar manner as a 58 resonance phenomenon [18, 19] with the further aim of controlling it. As summarized by Li et al. 59 [20], the reversal of the flow can lead to trap the released heat in the reactor: the corresponding flow 60 cycle characteristic time is related to the velocity of the thermal wave propagation. 61 Transient phenomena can also be exploited to operate a reactor system more safely and efficiently 62 under well controlled variable conditions than under stable steady-state conditions [18, 21], which 63 the wave propagation theory successfully describes. For example, Altimari et al. [21] considered the 64 case of loop reactors dedicated to methanol synthesis to show that the competition between the

65 respective velocities of rising and declining temperature fronts impacts the range of switch times

66 that are compatible with stable operation.

67 **1.2. Scope of the study**

68 The present study concerns the start-up of a catalytic methanation reactor:

69
$$CO_2 + 4 \cdot H_2 \rightleftharpoons CH_4 + 2 \cdot H_2O, \Delta_r H^0 = -165 \, kJ/mol_{CO2}.$$

70 This reaction has been attracting much research interest over the past five years, due to its potential

71 interest for renewable energy conversion and storage [22].

72 A previous research effort was made to numerically characterize the start-up time [23] when a

reacting gas is suddenly injected in a warm reactor. The aim of the present experimental work is to

examine the reaction front movement from the initial state (idle state – warm bed with no gas

injection) to the nominal steady state (constant gas flow rate after a step injection).

- 76 The experimental setup and procedure are described in part 2, together with the data processing
- that will be performed to access the desired information.

78 It should be mentioned that the catalyst used in the present study was based a novel processing

technology for producing thin, nanostructured Ni coatings on metal substrates. The coatings are

80 interdiffused enabling intimate connectivity between the active elements for reaction and the base

81 substrate, resulting in mechanical robustness. This results in a catalytic element that is approximately

82 100 μm thick providing a unique advantage for methanation (or for steam methane reforming) at

83 high space velocities.

The results presented in part 3 are interpreted from a wave propagation point of view. To the authors' knowledge, the wave propagation theory has never been used to describe the evolution of the start-up time itself (characteristic time required for the front to reach its steady-state location). This topic however appears interesting because the start-up time actually is related to the wave velocities variations. The gradual cancellation of the front velocity is indeed a synonymous with the eventual front stabilization. The present work fills this gap by establishing a bridge between the startup time assessment and the wave propagation theory. Only the axial propagation aspects are of 91 interest: the examination of advanced phenomena (e.g. transversal hotspot formation [24, 25] or
92 microscopic/macroscopic mechanisms coupling [26]), are beyond the scope of this study. Yet prior to
93 discussing the system configuration and results it is important to review propagation of transient

94 behavior in catalytic reactors.

95

1.3. Wave propagation theory – technical aspects

96 The wave propagation theory consists in following the position z_T of a reaction front point whose 97 temperature is T (Lagrangian description: z_T ; $T(z_T) = constant$): this point moves at velocity $v_T =$ 98 dz_T/dt .

99 If the gas flows through the bed at interstitial velocity v_{gas} , a thermal perturbation will propagate in 100 the same direction as the gas (forward movement) with a characteristic velocity v_{therm} :

101
$$v_{therm}(z_T, t) = \frac{\rho^{gas} \cdot c_p^{gas}}{\rho^{solid} \cdot c_p^{solid} + \rho^{gas} \cdot c_p^{gas}} \cdot v_{gas}(z_T, t)$$
 (Eq. 1)

102 The densities used in equation 1 are apparent and therefore incorporate the void fraction. $\rho \cdot C_p$ is 103 the heat capacity of the corresponding medium (solid or gas) per unit of reaction medium (solid+gas) 104 volume.

105 If the axial conduction through the porous solid that constitutes the bed is significant, a conduction 106 thermal wave can also be introduced. The reaction front in an adiabatic reactor can therefore move 107 in the opposite direction of the gas flow (backward movement), when cold gas is injected in a cold 108 bed and the reaction is ignited in a downstream portion of the bed by a local external heating. 109 Conduction enables the thermal power released by the reaction to be dispersed in both direction 110 (upstream and downstream), but since the reactants are purer in the upstream part of the reaction 111 front, ignition takes place in a more and more upstream axial location [7] (until an equilibrium is 112 reached). Vortmeyer & Jahnel [27] summarized this observation as follows: 113 "The movement against the flow is the most interesting feature and can only be explained by axial diffusion processes of heat and mass". It should be emphasized that this statement corresponds to a 114 115 situation where the bed is initially cold. In this situation indeed, the reaction doesn't initially occur in the upstream zone of the bed, and axial conduction is necessary for the upstream zone to heat-up viathe above-described mechanism.

118 If the gas is injected through a bed whose initial temperature is sufficient for the reaction to ignite in

the whole reaction medium length (warm start), axial conduction is no longer a theoretical requisite

- 120 for the reaction front to move against the flow. Due to the reaction all along the bed, the
- temperature tends to increase in all of the bed length immediately after the gas injection starts.
- 122 Therefore, a point of the reaction front whose temperature is *T* can move backward. The component
- associated to this phenomenon can be modeled as a propagating wave that moves at velocity v_{chem} :

124
$$v_{chem}(z_T, t) = -\frac{\dot{Q}_{reac}(z_T, t)}{\dot{Q}_{sens}(z_T, t)} \cdot v_{therm}(z_T, t) \text{ (Eq. 2)}$$

where
$$\dot{Q}_{reac}(z_T, t) = (-\Delta_r H) \cdot \dot{r}(z_T, t)$$
 is the volumetric power released by the reaction at location

126 z_T (per reaction medium volume)

127 and
$$\dot{Q}_{sens}(z_T, t) = \rho^{gas} \cdot C_p^{gas} \cdot \left(\frac{\partial T}{\partial z}\right)_{z_T, t} \cdot v_{gas}(z_T, t)$$
 is the net volumetric thermal power

- 128 transported by the gas flow in the presence of a temperature gradient.
- 129 The presence of an external heat exchange term adds a third wave:

130
$$v_{ext}(z_T, t) = -\frac{\dot{Q}_{ext}(z_T, t)}{\dot{Q}_{sens}(z_T, t)} \cdot v_{therm}(z_T, t) \text{ (Eq. 3)}$$

131 with $\dot{Q}_{ext}(z_T, t)$ the thermal power transferred from the external system to the reaction medium,

132 per unit of reaction medium volume.

133 In summary, the movement of an isothermal point results from the competition between these three

134 components:

135
$$v_T(z_T, t) = v_{therm}(z_T, t) + v_{chem}(z_T, t) + v_{ext}(z_T, t)$$
 (Eq. 4)

136 Equation 4 is fundamentally derived from a simplified reactor model (more details in appendix A). It

- 137 can be understood qualitatively as follows:
- 138 ignoring the external transfer, if the thermal energy released by the reaction is lower than the
- thermal energy required for the reaction medium to keep its temperature gradient, then the
- 140 corresponding energy deficit leads to a decrease in the temperature of the front, and the

141 isothermal line moves forward. Conversely, if $\dot{Q}_{reac}/\dot{Q}_{sens}$ exceeds 1, the front increases in 142 temperature, so the isothermal line moves backward.

143-if one assumes a simple external heat transfer of the form $\dot{Q}_{ext} \propto T_{ext} - T$, then for a given144external temperature T_{ext} , v_{ext} is an increasing function of the local temperature T. To be more145specific, v_{ext} is positive (negative, resp.) if the external medium cools-down (heat-up, resp.) the146reaction medium, and $|v_{ext}|$ is higher when $|T_{ext} - T|$ is higher. In other words, the external

147 transfer generates a rotation of the reaction front to make it more parallel to the external

148 medium axial temperature profile (horizontal profile if T_{ext} is uniform).

149 Many variations of equations 1 to 4 can be derived. Zahn [28] adopted a simplified form for an 150 adiabatic reactor, assuming that the reaction front is nearly linear and the reaction rate is uniform in 151 space. This assumption makes sense as a first approximation, since the consumption of the reactants 152 comes with a temperature increase (exothermicity): the two effects usually tend to oppose each 153 other along the reaction front in an adiabatic reactor. Still, the two effects are non-linear and the 154 assumption that they cancel each other, while convenient, is restrictive. In particular, if the 155 conversion of a reactant fraction generates a temperature increase whose effect on the reaction rate 156 is considerably stronger than the effect of the corresponding reactant rarefaction, the temperature 157 at this location z increases dramatically, and:

i) The downstream part of the reaction front is subject to a temperature increase that is higher at

159 location z than at location $z + \delta z$: $\left(\frac{\partial T}{\partial t}\right)_z > \left(\frac{\partial T}{\partial t}\right)_{z+\delta z} > 0$. The downstream part of the front 160 slope hence decreases through time $\left(\left(\frac{\partial^2 T}{\partial t \partial z}\right)_{z+t} < 0\right)$.

161 ii) The upstream part of the front is subject to a temperature increase that is higher at location z162 than at location $z - \delta z: \left(\frac{\partial T}{\partial t}\right)_z > \left(\frac{\partial T}{\partial t}\right)_{z-\delta z} > 0$. The upstream front slope gets steeper through 163 time $\left(\left(\frac{\partial^2 T}{\partial t \partial z}\right)_{z^-} t > 0\right)$. 164 Conversely, if the conversion of a reactant fraction is such that the corresponding temperature 165 increase is insufficient to keep the reaction rate at its current value, the temperature will drop 166 locally. In both cases, the front velocity is strongly non-uniform.

167 **2. Equipment and method**

168

..

2.1. Experimental setup and procedure

169 The general setup is shown on figure 1. The tubular reactor made of Inconel-625 is 1 cm in internal 170 diameter. The 20 cm long reaction medium consists of 1.53 g Nickel-based catalyst diluted in 28.7 g 171 alumina. This diluted catalyst was loaded in the reactor under the form of 10 partial loads, in an 172 effort to limit the risk of pellets segregation (table 1). More information about the catalyst properties 173 is provided by Lugo-Pimentel [29]; the alumina pellets are 0.3 mm in average diameter. The inlet and 174 outlet zones of the tube are filled with 6 g of alumina pellets each (corresponding to a length of 4 175 cm). Five type-K thermocouples of diameter 1.6 mm are used to measure the internal temperature of 176 the reactor (T_1 to T_5) as illustrated on figure 2. The temperatures are recorded every 10 s. The 177 electric furnace power is controlled in such a manner that T_{set} is equal to the temperature setpoint. 178 T_{set} is measured in the narrow space between the reactor outer wall and the furnace inner wall, at 179 $z = 14 \ cm$ (middle axial location). The z axis is horizontal to limit the consequences of natural 180 convection on the temperature profile. Mass flow controllers Unit Instrument UFC-1100 are used for 181 H₂ and CO₂ supply, and a Tylan FC-280S supplies N₂ as a tracer. The product gas composition is

182 measured every 4 minutes by an Inficon series 3000 gas chromatograph.

Six experiments are performed, each one corresponds to a given T_{set} (table 2). The experiments were carried out in the following chronological order: 2, 5, 1, 6, 4. This randomization constitutes a precaution against the eventuality of a gradual catalyst deactivation effect, although previous work using this catalyst didn't find any deactivation in the range of temperatures here explored. The intermediate temperature corresponding to experiment #3 was added to the initial plan because the preliminary observations of the results showed that the range between 400°C and 420°C deserved extra attention (see part 3).

190 For each experiment, the reactor is heated without any fluid flow for a duration of 5 hours in order to 191 make sure that the thermal idle steady state is reached. During this heat-up phase, the reactor 192 contains pure H_2 in order to preserve the catalyst. A gas mixture that consists of 193 $CO_2/H_2/N_2$ 200/800/20 mL(STP)/min is then injected in the reactor (step injection – instant t = 0 is 194 the instant when the gas valve is opened). The gas is supplied at 22°C, and the reactor outlet 195 pressure is 5 bar. The gas injection is maintained for a minimum duration of 2 hours. The furnace 196 remains operative and controlled at T_{set} during the whole experiment. The authors stress that even 197 though the furnace keeps on delivering some heat after the gas injection step, the reactor itself can be hotter than the furnace in most of the reactor length ($\dot{Q}_{ext} < 0$): the furnace power compensates 198 199 the thermal loss that exceeds the reaction exothermicity. Such high thermal loss would not be 200 representative of practical industrial situations, where scale effects imply low relative thermal loss 201 (low system outer surface area / reaction volume ratio).

202 2.2. Post-treatment

The post-treatment procedure is summarized figure 3. On the basis of the recorded temperatures, a 4th degree polynomial interpolation is built at each instant (figure 4). This polynomial interpolation is used to calculate the location of the isothermal point z_T for each experiment, at each instant:

206
$$z_T(t)$$
; $T(z_T, t) = T_{set}$ with $(\partial T/\partial z)_{T_{set}} > 0$ (Eq. 5)

207 Note that the positive space derivative means that the considered isothermal point is on the reaction
208 front (transition between the non-ignited zone with a low-temperature, and the ignited zone with a
209 higher temperature).

The maximum of the interpolation function is called "hotspot" in the sequel. The authors strongly emphasize that the real hotspot can be different from this interpolation-based hotspot. Rather than an accurate prediction of the real hotspot properties, the aim of the interpolated hotspot is to indicate the axial zone where the reaction is the most active. Indeed, the most active zone corresponds to a gradual change in the sign of the temperature space-derivative: the interpolated hotspot location z_{hot} is a signature of this reversal. The reaction front movement will be assessed through the evolution of both $z_T(t)$ and $z_{hot}(t)$. The generic notation $z_{front}(t)$ is used to indicate that the description used for the isothermal point represents $z_T(t)$ (i.e. $z_{front}(t) = z_T(t)$), yet for the case of the hotspot it is $z_{hot}(t)$ (i.e. $z_{front}(t) = z_{hot}(t)$).

Preliminary experiments have shown that the gas injection implies a wrong-way behavior that can be broken down into two steps (qualitative illustration on figure 5). Each step will therefore lead to an analysis as described hereafter, together with an interpretation of the obtained results in terms of wave propagation velocity.

224 2.2.1. Step 1

The hotspot is initially located in the middle of the reactor (axial hotspot before gas injection, due to border effects). The isothermal point z_T can't be defined at t = 0, because the temperature of any point of the reactor at t = 0 is slightly lower than T_{set} (T_{set} is controlled in the furnace). However the reaction enables z_T to be defined as soon as the reaction starts, and the first defined value of z_T is close to 14 cm.

The first step of the reaction front relocation consists in a quick backward movement (figure 5). During this step, the strongest value of the front velocity $\max(|v_{front}(t)|)$ will be calculated (equation 6) for each experiment, in order to assess the effect of the setpoint temperature on this upstream-oriented movement.

234 $v_{front}(t) = \frac{z_{front}(t+\delta t) - z_{front}(t)}{\delta t}$ with $\delta t = 10 s$ (Eq. 6)

235 2.2.2. Step 2

The front moves slowly towards the outlet. The characteristic time for the front to move from z_{front}^{min} to its asymptotic value z_{front}^{∞} is the quantity of interest for this part. Indeed, t^{min} is low so the characteristic time of the forward movement is a relevant indicator of the time it takes for the reactor to start-up. Defining a relevant characteristic time is not straightforward, because $z_{front}(t)$ does not correspond *a priori* to a simple usual mathematical function. Therefore, two different characteristic times are introduced for the $z_{front}(t)$ vs. T_{set} response assessment (figure 5). i- The first characteristic time will be referred to as "local characteristic time" $T_{1/2}$, defined according to equation 7. This definition if very simple, but the comparison of the $T_{1/2}$ values has a limited meaning if the different curves shapes aren't sufficiently similar to each other. Another difficulty is to determine the exact value of z_{front}^{∞} if steady state is still not totally reached after a few hours of experiment.

247
$$T_{1/2}$$
; $z_{front}(T_{1/2} + t^{min}) = \frac{z_{front}^{\infty} + z_{front}^{min}}{2}$ (Eq. 7)

ii- The second characteristic time will be referred to as "integral characteristic time" τ , it is defined 248 249 according to equation 9. This relation is based on the following idea: if an inert cold gas was suddenly 250 injected in a pre-heated furnace, then the thermal front would move forward. The time-dependent location of the thermal front would be equal to lower axial position and the additional distance 251 252 required for the front to reach the asymptote, and the evolution of $z_{front}(t)$ would theoretically follow a simple exponential law¹ (equation 8). The corresponding characteristic time τ could be 253 254 determined according to equation 9. In the present case, the reaction implies that the evolution of 255 $z_{front}(t)$ isn't theoretically exponential. In other words, the real situation (with reaction) is assessed through an equivalent theoretical (inert) situation. Although this approach is more complex than the 256 257 local one, τ offers two advantages compared to $T_{1/2}$. First, due to its integral nature, it is more representative of the global evolution of the $z_{front}(t)$ curve: the comparison of two curves whose 258 259 shapes are slightly different from each other remains possible through the equivalent function, and the unavoidable small local oscillations of z_{front} tend to cancel statistically. Second, z_{front}^{∞} doesn't 260 need to be known for the calculation of τ : the calculation remains possible if the experiment 261 approaches the steady state without totally reaching it. 262 263 From a practical point of view, the integral terms are determined by the trapezoidal rule, and

successive values of τ are tested (dichotomy – stopping criterion: difference between successive

¹ Other ways of building the equivalent exponential law are discussed in appendix B. The various methods don't change much the value of τ , and our conclusions about the effect of T_{set} remain identical.

265 values < 10 s) until equation 9 is fulfilled.

266
$$z_{front}(t) = z_{front}^{min} + (z_{front}^{\infty} - z_{front}^{min}) \cdot \left(1 - \exp\left(-\frac{t - t^{min}}{\tau}\right)\right)$$
 (Eq. 8)

267 τ ; $A(\tau) = B(\tau)$ (Eq. 9)

268 with
$$A(\tau) = \left(\frac{(t^{\infty} - t^{min})}{2} + \tau \cdot \exp\left(\frac{t^{min} - t^{\infty}}{2 \cdot \tau}\right) - \tau\right) \cdot \int_{t^{min}}^{t^{\infty}} z_{front}(t) \cdot dt$$

269
$$B(\tau) = \left(t^{\infty} - t^{\min} + \tau \cdot \exp\left(\frac{t^{\min} - t^{\infty}}{\tau}\right) - \tau\right) \cdot \int_{t^{\min}}^{\frac{t^{\infty} + t^{\min}}{2}} z_{front}(t) \cdot dt$$

270 t^{∞} is the duration of the experiment.

271

- 272 **3.** Results and discussion
- 273 **3.1. General observations**

The front position z_{front} for the six experiments is shown on figure 6. After the sharp backward movement (step 1), it appears that the forward movement (step 2) can be strong or very weak, depending on the temperature setpoint of the furnace:

- 277 At low temperature, the forward movement is large and the hotspot tends to stabilize in a
- 278 downstream zone of the reactor ($z_{hot}^{\infty} > 14cm$). The chosen setpoints are however high

enough to avoid a complete blow away of the reaction front.

280 - At high temperature, the front stays very close to z_{front}^{min} and the hotspot remains confined in 281 the upstream zone of the reactor. This arises from the exothermicity of the reaction that is 282 further described in part 3.3.2.

283 We observe a transition at ~410°C but we cannot positively affirm if this transition takes the form of 284 2 zones of operation that are really distinct. There might exist a threshold temperature T_{thres} (410°C 285 $< T_{thres} < 420$ °C) that separates the two steady-state front stabilization behaviors. Yet it is known 286 that multiple steady-states (depending on the operation history) and oscillating solutions can exist 287 [17, 30]. Without capturing all temperature possibilities it is difficult to conclusively identify which 288 prevails.

The conversion of CO_2 into methane as a function of time is reported on figure 7 (no conversion is 289 calculated at t = 0 because the corresponding gas sample is similar to that contained in the reactor 290 291 just before injection). The asymptotic conversion is approximately reached as early as t = 4 min (except for $T_{set} = 380^{\circ}C$). A slight decreasing trend seems to be at stake long after t=4 min, which 292 293 is consistent with the fact that it takes time for the reactor to reach its real steady state (long thermal 294 transition). This trend is however low compared to the instant conversion fluctuations. Thus, from 295 the first or second measurement (t=4min or t=8min) any possible variations in the outlet composition 296 are too low to be detected there they are considered constant. In other words, the thermal power 297 released by the reaction in the whole reactor can be deemed approximately constant for the whole duration of the experiment. 298

Parts 3.2 and 3.3 hereafter examine more specifically how the front movement can be related topropagating waves velocity.

301

302

3.2. Backward movement and transition to the forward movement

Figure 8 illustrates the backward propagation mechanism explained in part 1.3, in the typical case of $T_{set} = 410^{\circ}C$: while T_2 is initially lower than T_3 , T_2 increases faster than T_3 . An isothermal point can therefore move backward. Since $(\partial T/\partial t)_{z_{hot}-\delta z} \gg (\partial T/\partial t)_{z_{hot}}$, the hotspot itself increases in temperature as it moves backward.

307 The maximum value of $|v_{front}(t)|$ during the first step is reported as a function of T_{set} on figure 9. 308 The relation between v_{front} and T_{set} turns out to be approximately linear. This observation echoes 309 the results of previous studies, where the start-up time of a wall-cooled reactor was a quasi-linear 310 function of its initial temperature [23], or where a front wave velocity was a quasi-linear function of 311 the flow rate [15]. The present result shows another situation where a characteristic of a reactor's 312 dynamic behavior is actually very simple, despite the fact that highly non-linear phenomena are fundamentally involved. We also have $|v_{hot}| < |v_T|$. The hotspot temperature increase tends to 313 314 oppose the backward movement:

- 315 $v_{hot} = v_T + v_{hot/T}$ (Eq. 10)
- 316 with $v_{hot/T}$ the hotspot velocity in the reference frame of the isothermal point: $v_{hot/T} \approx$
- 317 $\left(\frac{1}{\partial T/\partial z}\right)_{z_{hot}} \cdot \frac{dT_{hot}}{dt}$ if the hotspot temperature evolves along a linear reaction front.
- 318 The backward movement can be analyzed in terms of wave propagation velocity.
- The value of \dot{Q}_{sens} is initially low (low $\partial T/\partial z$ during the idle state): $\dot{Q}_{reac}/\dot{Q}_{sens} \gg 1$, hence the
- 320 strong backward movement. The backward movement will end eventually as \dot{Q}_{sens} increases up to
- 321 \dot{Q}_{react} , due to two phenomena:
- 322 i- \dot{Q}_{reac} itself generates a strong increase in $\partial T/\partial z$.
- 323 ii- The low temperature of the injected gas generates a cold thermal wave that reaches the low
 324 values of *z* first.

It should be noticed that the gas velocity can be deemed approximately independent on the axial 325 location and on the setpoint, because the methanation reaction generates a decrease in mole 326 327 quantities (5 mol \rightarrow 3 mol) while releasing heat. This simplifies the calculation of an order of magnitude for the thermal wave velocity. The (constant) flow rate used in experiments #1 to 6 and 328 329 the typical values of the solid and gas properties in the reactor lead to a typical thermal wave velocity 330 $v_{therm} \approx 10^{-4} m/s$ (constant). This value is one order of magnitude lower than the maximum value of $|v_{front}|$, which confirms numerically that the chemical wave is strongly preponderant during the 331 fast backward movement ($v_{front} \approx v_{chem}$). More importantly, this order of magnitude implies that 332 the cold wave crosses the 4 cm-long upstream inert zone in ~400s, which is consistent with the 333 334 observed values of t^{min} (between 200 s and 500 s). This order of magnitude corroborates the impact 335 of the cold front propagation on the end of the backward movement.

336

3.3. Forward movement and asymptotic stabilization

As the cold thermal front keeps progressing, \dot{Q}_{sens} exceeds \dot{Q}_{reac} and the reaction front moves forward. It is clear from figure 6 that the general front velocity (global slope of $z_{front}(t)$ as long as one doesn't approach steady state) during the forward movement is a decreasing function of T_{set} . 340 The higher the value of T_{set} , the higher the thermal power released by the reaction (higher

341 conversion of CO₂ into CH₄, in relation to the reaction rate increase with temperature – Arrhenius

law). While lower than 1, $\dot{Q}_{react}/\dot{Q}_{sens}$ is higher at higher T_{set} , hence moderating the forward

343 progression of the resulting wave (more negative value of v_{chem}).

Still, this first element of analysis doesn't give any information about how quickly the reaction fronteventually stabilizes.

346 The characteristic times $T_{1/2}(T_{set})$ and $\tau(T_{set})$ as reported on figure 10.

Note that for $T_{set} = 410^{\circ}C$, the duration of the experiment turned out to be insufficient for the front to be close enough to steady state: the local time is based on a final position that is significantly lower than the (unknown) asymptotic one, and the exponential approximation has difficulties fitting the experimental results. As a consequence, the points for experiment #3 underestimate significantly the real values. Whatever the real value, the fact that experience #3 has the longest characteristic times is sufficient to drive our analysis.

353 Figure 10 suggest that the start-up characteristic time reaches a maximum for a certain setpoint:

for $T_{set} < T_{thres}$, the characteristic time of the front forward movement is an increasing function of

355 T_{set} , while the characteristic time decreases with T_{set} above T_{thres} .

356 It is reminded that if a cold inert gas was injected in a heated packed bed ($v_{chem} = 0$), the

temperature front would move forward and v_{ext} would be more and more negative until

358 $v_{ext} = -v_{therm}$ at each location (profile stabilization). The corresponding characteristic time would

359 be theoretically independent on the external temperature. In the present case, the characteristic

360 time for the forward movement to stabilize also depends on the variations of v_{chem} (value of

361 dv_{chem}/dt , whether $|v_{chem}|$ is initially high or not). The existence of a maximum of the

362 characteristic time as a function of T_{set} suggests that two opposite mechanisms can come into play

363 (3.3.1 and 3.3.2): T_{thres} marks the limit between the respective predominance zones of the two

364 mechanisms (mechanism 3.3.1 for $T_{set} < T_{thres}$, mechanism 3.3.2 for $T_{set} > T_{thres}$).

366

3.3.1. Temperature gradient decrease

367 The cold front progression ends up when the whole inert porous zone of the reactor reaches the inlet 368 gas temperature: the gas that reaches the reaction zone doesn't decrease in temperature anymore. Nevertheless, the reaction front keeps on moving with a local velocity v_{front} . During this 369 progression, the temperature gradient of the front decreases: \dot{Q}_{sens} decreases until v_{reac} reaches 370 371 $-(v_{therm} + v_{ext})$. The reaction zone located upstream the isothermal location (i.e. $z < z_T$) extends with the front progression. The residence time of the gas in this zone increases accordingly, which 372 373 means that the reactants that reach z_T are less and less pure as the front progresses. This mechanism tends to delay the moment when \dot{Q}_{reac} equilibrates \dot{Q}_{sens} , since the reaction rate at 374 375 location z_T decreases through time. The higher the temperature, the higher the consumption of 376 reactants in the upstream zone of the reaction front. In other words, a high T_{set} implies that \dot{Q}_{reac} 377 decreases almost as fast as \dot{Q}_{sens} and the front stabilization is strongly delayed.

378

3.3.2. Positive thermochemical feedback and local temperature excursion

379 This mechanism is related to the existence of a positive thermal feedback between the temperature, 380 the reaction rate, and the thermal power released by the reaction. Due to this feedback, the reaction 381 rate can self-increase. One idealized way to model this behavior is to consider a theoretical situation 382 where the reaction wouldn't trigger below a certain ignition temperature, and would be completed 383 instantly above the ignition point. In this fictitious situation, the reactants would remain pure all 384 along their movement in the cold upstream zone. As soon as they reach a point whose temperature 385 is above ignition temperature, the reactants would be instantly converted, always releasing the 386 whole reaction enthalpy \dot{Q}_{ad} at a single location (reaction front = ignition front). The temperature 387 variation at this ignition location would therefore follow the temperature variation of the upstream 388 gas, but the ignition location would be constant. In other words, the cold front progression would 389 imply a decrease in the ignition front temperature until the upstream gas reaches the inlet 390 temperature (arrival of the cold front trailing edge); however, the front would stay immobile (no

forward movement, which means that the forward movement of the reaction front would have aduration of zero).

Of course, the real behavior of a reactor doesn't comply strictly with this binary ignition-based 393 394 model. The deviation between the ignition-based model and reality is related to the fact that some 395 conversion occurs before the gas reaches the sharp zone of the front: the heat released at the front 396 isn't constant $(\dot{Q}_{reac}(z_T, t) < \dot{Q}_{ad})$, and the reaction front isn't infinitely steep. As the cold front 397 progresses, the upstream zone of the reactor converts less and less reactants. Purer and purer 398 reactants reach z_T , where $\dot{Q}_{reac}(z_T, t)$ increases and the reaction front gets steeper (as described in 399 part 1.3). $v_{chem}(z_T, t)$ tends to be more and more negative, and opposes the positive component of 400 v_{front} . To summarize, this mechanism implies that the higher the setpoint, the stronger the self-401 acceleration, the stronger the sharpening of the reaction front, and the sooner v_{chem} becomes 402 negative enough to stabilize the reaction front location.

403

404 **4. Conclusion**

405 The movement of the reaction front in a non-adiabatic pre-heated fixed-bed methanation reactor 406 upon gas injection was investigated experimentally. It was shown that under the explored conditions, 407 the hotspot moves back and forth before stabilizing in a downstream zone of the reactor (if the 408 temperature setpoint is relatively low) or in an upstream zone (if the temperature setpoint is high). 409 The instant-maximum velocity of the front backward movement turned out to be a linear function of 410 the temperature setpoint. The start-up time seems to be a non-monotonous function of the setpoint, 411 the maximum of the characteristic time being reached for the temperature setpoint threshold that 412 separates the downstream/upstream stabilization frontier. It was shown that this behavior can be 413 understood via the competition between the forward-moving thermal wave and the backward-414 moving chemical wave, the latter being dependent on the thermal and chemical conditions at the 415 upstream vicinity of the reaction front.

Another noticeable point is that the hotspot movement follows the same qualitative behavior as the isothermal points. Even though the hotspot doesn't correspond to a given constant temperature, the fundamental governing mechanisms involved in its evolution are the same as those governing the evolution of an isothermal front: the hotspot properties are merely the result of the reaction front properties.

The observations made during the present experimental campaign were conducted with one gas flow rate only, the inlet gas mixture being stoichiometric. For future work, the same study should be conducted for different flow rates. The range of tested setpoints should be refined to check the reality of the threshold temperature existence, as well as its properties in terms of characteristic time. Relatively long time under operation should be chosen to let the reaction front position reach its quasi steady state.

427 If equipment modifications are possible, an improvement would consist in using more axial
428 temperature measurement points, since the polynomial interpolation that was used here to establish
429 the hotspot position is a source of uncertainties.

430 Alternatively or as a complement, a modelling & numerical simulation campaign would enable to 431 access all the above-mentioned information. Different levels of complexity could be considered. A 432 simple pseudo-homogeneous plug-flow model with quasi steady-state kinetics would give a first 433 approximation. The difficulties are twofold. Firstly, the description of the catalytic medium isn't 434 sufficient to predict the response of the system: the thermal behavior of the reactor wall, the tubing 435 and the furnace can have a strong impact on the operation. Keeping the model simple despite these 436 numerous elements would require numerous experiments to fit ad-hoc parameters with sufficient 437 statistical representativeness. Secondly, the reproducibility of the experiments depends on the 438 possibility of having precise timing (gas injection, composition measurement). 439 A more advanced modeling would use a multiscale model (pellet scale vs. bed scale) including the 440 distribution of the diluted catalyst, which can play a significant role for highly diluted beds [31]. The

441 obtention of transient kinetic laws is particularly difficult due to the coupling between the adsorption

442 effects and the reaction mechanisms ([32, 33]), but would result in further improvement in the

443 accuracy of the predictions as quasi steady-state kinetics fail to capture some transient effects (e.g.

delayed response of outlet water content [34]).

- 445
- 446 **Acknowledgement:** The authors thank Région Nouvelle Aquitaine, France, for funding this research.
- 447

448 **Conflict of interest:** The authors declare no conflict of interest

449

450 Appendix A. Derivation of the front velocity equations

451 A simple model of a fixed-bed reactor (pseudo-homogeneous, 1D in axial direction, plug flow, no

452 dispersion effect, constant thermophysical parameters and fluid velocity) leads to the following

453 energy balance:

454
$$\left(\rho^{gas} \cdot C_p^{gas} + \rho^{solid} \cdot C_p^{solid}\right) \cdot \frac{\partial T}{\partial t} = -\rho^{gas} \cdot C_p^{gas} \cdot v_{gas} \cdot \frac{\partial T}{\partial z} + \dot{Q}_{reac} + \dot{Q}_{ext}$$
(Eq. A.1)

455 with $\dot{Q}_{reac} = -\Delta_r H \cdot r(C_i, T)$ the volumetric thermal power released by the reaction, and \dot{Q}_{ext} the

456 thermal power transferred from the outer surface of the reactor wall to the reaction medium (per

- 457 unit of reaction medium volume).
- 458 Equation A.1 can be rewritten:

459
$$-\left(\frac{\partial T}{\partial t}\right) \cdot \left(\frac{\partial T}{\partial z}\right)^{-1} = \frac{\rho^{gas.}c_p^{gas}}{\rho^{gas.}c_p^{gas.} + \rho^{solid.}c_p^{solid}} \cdot v_{gas} - \frac{\dot{Q}_{reac} + \dot{Q}_{ext}}{\rho^{gas.}c_p^{gas.} + \rho^{solid.}c_p^{solid.}} \cdot \left(\frac{\partial T}{\partial z}\right)^{-1}$$
(Eq. A.2)

460 A moving point whose temperature is T (constant) travels a distance dz_T during the time interval dt461 (figure A.1), such that:

462 $dT = 0 = \frac{\partial T}{\partial t}dt + \frac{\partial T}{\partial z}dz_T$ (Eq. A.3)

463 Hence, the phase velocity of the corresponding wave (velocity of an isothermal point in Lagrangian464 description) is:

465
$$v_T = \frac{dz_T}{dt} = -\left(\frac{\partial T}{\partial t}\right) \cdot \left(\frac{\partial T}{\partial z}\right)^{-1}$$
 (Eq. A.4)

467 Equation A.2 becomes:

468 $v_T = v_{therm} + v_{chem} + v_{ext}$ (Eq. A.5)

469 with
$$v_{therm} = \frac{\rho^{gas} \cdot c_p^{gas}}{\rho^{gas} \cdot c_p^{gas} + \rho^{solid} \cdot c_p^{solid}} \cdot v_{gas}$$

470
$$v_{chem} = -\frac{\dot{Q}_{reac}}{\rho^{gas} \cdot C_p^{gas} + \rho^{solid} \cdot C_p^{solid}} \cdot \left(\frac{\partial T}{\partial z}\right)^{-1} \times \left(\frac{\rho^{gas} \cdot C_p^{gas} \cdot v_{gas}}{\rho^{gas} \cdot C_p^{gas} \cdot v_{gas}}\right) = -\frac{\dot{Q}_{reac}}{\dot{Q}_{sens}} \cdot v_{thermal}$$

471 and
$$v_{ext} = -\frac{\dot{Q}_{ext}}{\rho^{gas} \cdot C_p^{gas} + \rho^{solid} \cdot C_p^{solid}} \cdot \left(\frac{\partial T}{\partial z}\right)^{-1} \times \left(\frac{\rho^{gas} \cdot C_p^{gas} \cdot v_{gas}}{\rho^{gas} \cdot C_p^{gas} \cdot v_{gas}}\right) = -\frac{\dot{Q}_{ext}}{\dot{Q}_{sens}} \cdot v_{therm}$$

472

473 Appendix B. Building the equivalent exponential function

Aside from the integral approach used in this paper, the "equivalent exponential function" can be
obtained thanks to various strategies. For example, one can minimize the RMS function of the
difference between the experimental value and the equivalent function (equation B.1).

477
$$RMS^{2}(z_{hot}) = \frac{1}{n} \cdot \sum_{i} \left[z_{i} - \left(z_{hot}^{min} + \left(z_{hot}^{\infty} - z_{hot}^{min} \right) \cdot \left(1 - \exp\left(- \frac{t_{i} - t^{min}}{\tau} \right) \right) \right) \right]^{2}$$
(Eq. B.1)

478 with z_i the location of the hotspot at instant t_i (*n* measurements from t^{min} to the end of the 479 experiment).

480 A variation of this method is to minimize the function defined by equation B.2:

481
$$RMS^{2}(t \cdot z_{hot}) = \frac{1}{n_{i}} \cdot \sum_{i} t_{i}^{2} \cdot \left[z_{i} - \left(z_{hot}^{min} + \left(z_{hot}^{\infty} - z_{hot}^{min} \right) \cdot \left(1 - \exp\left(- \frac{t_{i} - t^{min}}{\tau} \right) \right) \right) \right]^{2}$$
(Eq. B.2)

The equivalent exponential obtained by means of the $RMS^2(t \cdot z_{hot})$ captures the asymptotic slope of the experimental results with more accuracy than the equivalent exponential based on $RMS^2(z_{hot})$. However, $RMS^2(t \cdot z_{hot})$ does not capture the early part of the transition as well as $RMS^2(z_{hot})$.

486 It should be noticed that the minimization of $RMS^2(z_{hot})$ or $RMS^2(t \cdot z_{hot})$ with τ as unique variable 487 requires the accurate knowledge of z_{hot}^{∞} , which can be hard if the experiment duration can't 488 guarantee that steady state will be reached. Alternatively, one can minimize RMS^2 as a function of 489 the two variables $\{z_{hot}^{\infty}, \tau\}$, which requires more computation effort. This point enlightens the 490 advantage of the integral-based derivation of the equivalent exponential: τ can be determined 491 without any knowledge of z_{hot}^{∞} , and z_{hot}^{∞} can be calculated *a posteriori* to check if is matches the 492 experimental results.

493 Whatever the approach used, the τ corresponding to the various experiments of this study turned-494 out to remain relatively unchanged. Figures B.1 and B.2 compare the three different approaches 495 (integral, $RMS^2(z_{hot})$ and $RMS^2(t \cdot z_{hot})$).

- 496 The equivalent exponential curve is shown on figure B.1 for two extreme cases:
- 497 for $T_{set} = 440^{\circ}C$, the experimental curve is very similar to a real exponential, so the results

498 of the various approaches are nearly indistinguishable.

499 - for $T_{set} = 400^{\circ}C$, the deviation from an exponential function is the most prominent. Even in

500 this "worst-case scenario", the exponential approximations are relatively similar.

- 501 Figure B.2 reports the τ associated to the various methods for each *Tset*. The z_{hot}^{∞} value were
- obtained together with τ in the case of RMS^2 , and was calculated *a posteriori* in the integral case.

504 **References**

505 1. Riese J., Grünewald M. Challenges and Opportunities to Enhance Flexibility in Design and 506 Operation of Chemical Processes. Chemie Ingenieur Technik 92 No. 12 (2020), pp.1-12. DOI : 507 10.1002/cite.202000057 508 509 2. Bremer J., Sundmacher K. Operation Range Extension via Hot-Spot Control for Catalytic CO₂ 510 Methanation Reactors. Reaction Chemistry & Engineering 4 (2019), pp. 1019-1037. DOI : 511 10.1039/C9RE00147F 512 513 3. Fischer K. L., Freund H. Intensification of Load Flexible Fixed Bed Reactors by Optimal Design of 514 Staged Reactor Setups. Chemical Engineering and Processing (2020). DOI : 515 10.1016/j.cep.2020.108183 516 517 4. Bremer J., Rätze H. G., Sundmacher K. CO₂ Methanation : Optimal Start-Up Control of a Fixed-Bed 518 Reactor for Power-to-Gas Applications. AIChE journal vol. 63-1 (2017), pp. 23-31. DOI : 519 10.1002/aic.15496. 520 521 5. Crider J.E., Foss A.S. Computational studies of transients in packed tubular chemical reactors. 522 AIChE Journal vol. 12-3 (1966), pp. 514-522. DOI : 10.1002/aic.690120322 523 524 6. Try R., Bengaouer A., Baurens P., Jallut C. Dynamic modeling and simulations of the behavior of a 525 fixed-bed reactor-exchanger used for CO2 methanation. AIChE Journal vol. 64-2 (2017). DOI : 526 10.1002/aic.15874 527 528 7. Sharma C. S., Hughes R. The behaviour of an adiabatic fixed bed reactor for the oxidation of carbon 529 monoxide-I. Chemical engineering science vol. 34 (1979), pp. 613-624. 530 531 8. Sharma C. S., Hughes R. The behaviour of an adiabatic fixed bed reactor for the oxidation of carbon 532 monoxide-II. Chemical engineering science vol. 34 (1979), pp. 625-634. 533 534 9. Van Doesburg H., De Jong W. A. Transient behaviour of an adiabatic fixed bed methanator I -535 Experiments with binary feeds of CO or CO2 in hydrogen. Chemical engineering science vol. 31 536 (1976), pp. 45-51. 537 538 10. Lehr C. G., Yurchak S., Kabel R. L. Response of a tubular heterogeneous catalytic reactor to a step 539 increase in flow rate. AIChE Journal vol. 14-4 (1967), pp. 627-636. 540 541 11. Try R. Étude expérimentale et modélisation dynamique d'un réacteur catalytique modulaire pour 542 l'hydrogénation du CO2 en méthane. Ph.D dissertation (2018), Université Claude Bernard Lyon 1. 543 544 12. Stangeland B.E., Foss A.S. Control of a fixed-bed chemical reactor. Industrial & engineering 545 chemistry fundamentals vol. 9-1 (1970), pp. 38-48. 546 547 13. Sheintuch M. Excitable waves in a fixed bed reactor : observations and analysis. Chemical 548 engineering science vol. 45-8 (1990), pp. 2125-2132. 549 550 14. Gatica J.E., Puszynski J., Hlavacek V. Reaction front propagation in nonadiabatic exothermic 551 reaction flow systems. AIChE Journal Vol. 33-5 (1987). 552 553 15. Sheintuch M., Adjaye J. Excitable waves in a fixed bed reactor : ethylene oxidation on platinum. 554 Chemical engineering science vol. 45-7 (1990), pp. 1897-1903.

555 556 16. Puszynski J., Hlavacek V. Experimental study of traveling waves in nonadiabatic fixed bed reactors 557 for the oxidation of carbon monoxide. Chemical engineering science vol. 33 (1979), pp. 1769-1774. 558 559 17. Jensen K. F., Ray W.H. The bifurcation behavior of tubular reactors. Chemical engineering science 560 vol. 37-2(1982), pp. 199-222. DOI: 10.1016/0009-2509(82)80155-3 561 562 18. Yakhnin V., Menzinger M. High temperature transients in catalytic fixed-bed reactors. Reviews in 563 chemical engineering 20 vol. 3-4 (2004). DOI : 10.1515/REVCE.2004.20.3-4.175 564 565 19. Yakhnin V.Z., Menzinger M. Moving hot spots and resonance in adiabatic packed-bed reactors. 566 AIChE Journal 44-5 (1998). 567 568 20. Li Q., Chen G., Zhu Y., Li X., Yao Y. Resonance response in the catalytic combustion of methane 569 and propane binary mixture in reverse-flow reactor. Chemical Engineering Journal 345 (2018), pp. 570 375-388. DOI : 10.1016/j.cej.2018.03.165 571 572 21. Altimari P., Mancusi E., Crescitelli S. Formation of thermal wave trains in loop reactors: stability 573 limits and spatiotemporal structure for reversible reactions. Industrial & engineering chemistry 574 research 51 (2012), pp. 9609-9619. DOI : 10.1021/ie2030008 575 576 22. Lee W.J., Li C., Prajitno H., Yoo J., Patel J., Yang Y., Lim S. Recent trend in thermal catalytic low 577 temperature CO2 methanation : a critical review. Catalysis today (2020). DOI : 578 10.1016/j.cattod.2020.02.017 579 580 23. Fache A., Marias F., Guerre V., Palmade S. Intermittent operation of fixed-bed methanation 581 reactors: a simple relation between start-up time and idle state duration. Waste and Biomass, 582 Valorization 11 (2018), pp. 447–463. DOI : 10.1007/s12649-018-0507-3 583 584 24. Narendiran K., Viswanathan G. A. Impact of Wall Heat Transport on Formation of Transversal Hot 585 Zones in Shallow, Non-adiabatic Packed-Bed Reactors. Industrial & engineering chemistry research 54 586 (2015), pp. 7352-7363. DOI: 10.1021/acs.iecr.5b01048 587 588 25. Marwaha B., Luss D. Hot zones formation in packed bed reactors. Chemical engineering science 589 vol. 58 (2003), pp. 733-738. DOI : 10.1016/S0009-2509(02)00602-4 590 591 26. Partopour B., Dixon A. G. Integrated multiscale modeling of fixed bed reactors: studying the 592 reactor under dynamic reaction conditions. Chemical engineering journal (2018). DOI: 593 10.1016/j.cej.2018.08.124 594 595 27. Vortmeyer D., Jahnel W. Moving reaction zones in fixed bed reactors under the influence of 596 various parameters. Chemical engineering science vol. 27-8 (1972), pp. 1485-1496. 597 598 28. Zahn V. M. Adiabatic simulated moving bed reactor – principle, nonlinear analysis and 599 experimental demonstration. Dr.-Ing. dissertation (2012) of Otto von Guericke Universität, 600 Magdeburg. https://pure.mpg.de/rest/items/item_1752935/component/file_1752934/content 601 accessed December 30 2020. 602 603 29. Lugo-Pimentel M. A. A thin layered structural coating on a metal substrate for enhanced 604 hydrogen production from steam methane reforming. M.Sc. dissertation (2017) of City University of 605 New-York. 606

- 30. Pita J., Balakotaiah V., Luss D. Thermoflow multiplicity in a packed-bed reactor:
 Conduction and cooling effects. AIChE journal vol. 35-3 (1989), pp. 373-384. DOI :
- 609 10.1002/aic.690350305.
- 610
- 611 31. Berger R. J., Pérez-Ramirez J., Kapteijn F., Moulijn J. Catalyst performance testing: bed dilution
- 612 revisited. Chemical Engineering Science 57 (2002), pp. 4921-4932. DOI : 10.1016/S0009-
- 613 2509(02)00273-7
- 614
- 615 32. Bundhoo A., Schweicher J., Frennet A., Kruse N. Chemical Transient Kinetics Applied to CO
- Hydrogenation over a Pure Nickel Catalyst. Journal of Physical Chemistry C 113, 24 (2009), pp. 1073110739. DOI : 10.1021/jp902647z
- 618
- 619 33. Vesselli E., Schweicher J., Bundhoo A., Frennet A., Kruse N. Catalytic CO₂ Hydrogenation on
- Nickel: Novel Insight by Chemical Transient Kinetics. Journal of Physical Chemistry C 115, 4 (2011),
 pp. 1255-1260. DOI : 10.1021/jp106551r
- 622
- 623 34. Tauer G., Kern C., Jess A. Transient Effects during Dynamic Operation of a Wall-Cooled Fixed-Bed
- 624 Reactor for CO 2 Methanation. Chemical Engineering & Technology Vol. 42-11 (2019). DOI :
- 625 10.1002/ceat.201900367

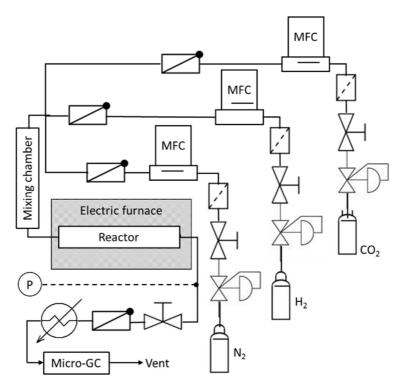


Figure 1. General schematic of the experimental setup.

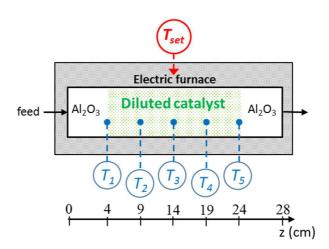


Figure 2. Temperature measurement in the reactor, and temperature control in the furnace.

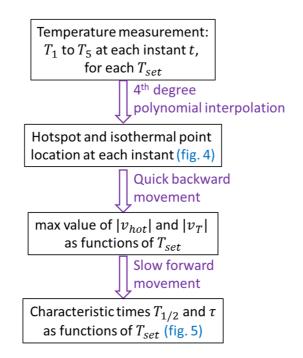


Figure 3. Post treatment procedure: from raw temperature measurements to velocities and characteristic times determination.

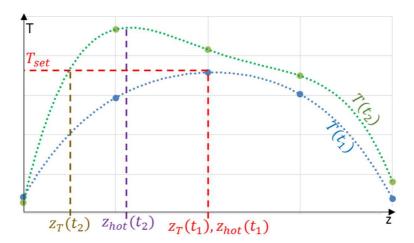


Figure 4. Polynomial interpolation and determination of the locations of the isothermal point (z_T ; $T = T_{set}$) and of the hotspot (z_{hot} ; $\partial T/\partial z = 0$) at two different instants t_1 and t_2 (qualitative typical example). z_T and z_{hot} are considered as two indicators of the reaction front movement.

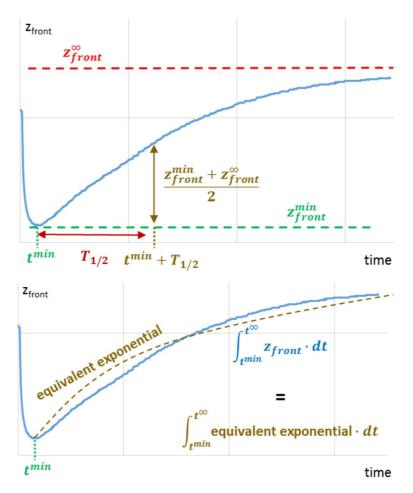


Figure 5. Evolution of the front location upon gas injection (qualitative typical example). Local characteristic time (top) and definition of the equivalent exponential function for the integral characteristic time (bottom).

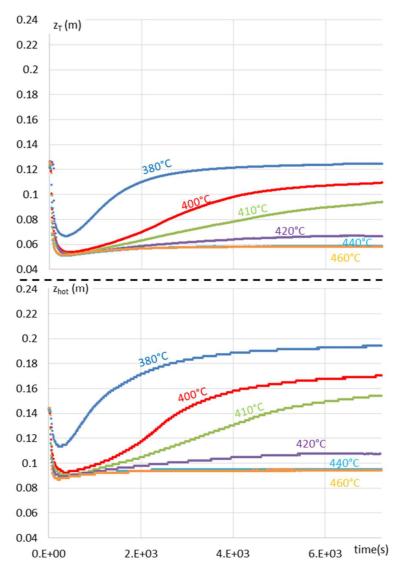


Figure 6. Evolution of the reaction front upon gas injection, for the six values of T_{set} : $z_T(t)$ (top) and $z_{hot}(t)$ (bottom). It is reminded that the reaction zone extends from z = 4 cm to z = 24 cm.

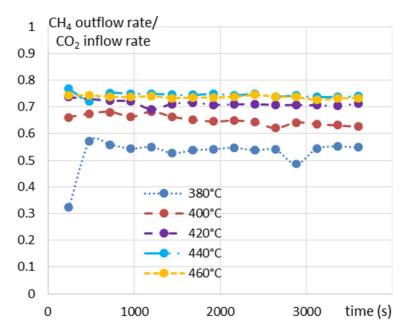


Figure 7. Conversion of CO₂ into methane upon gas injection (lines are shown to ease readability).



Figure 8. Evolution of temperatures T_1 to T_3 upon gas injection (top) and evolution of the hotspot location (bottom), when $T_{set} = 410^{\circ}C$.

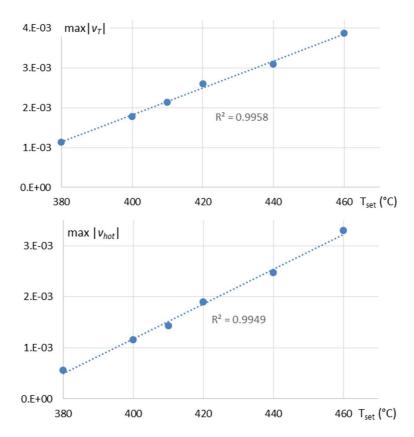


Figure 9. Maximum value of the front backward velocity as a function of the setpoint temperature (top: isothermal, bottom: hotspot).

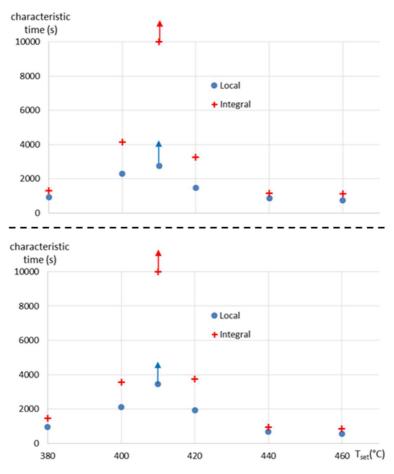


Figure 10. Characteristic times $T_{1/2}$ (local) and τ (integral) of the front downstream movement as a function of the temperature setpoint (top = isothermal, bottom = hotspot). The arrows indicate that the characteristic times couldn't be determined accurately for $T_{set} = 410^{\circ}C$ (too much time required to reach steady state), but they are higher than the reported values.

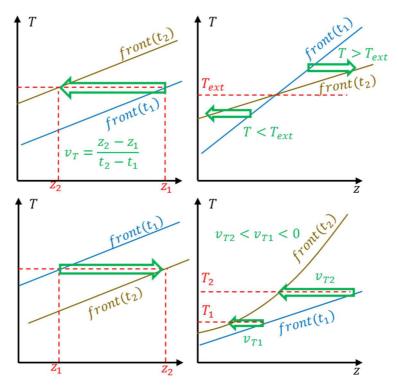


Figure A.1 Relocation of an isothermal point during a temperature variation of the reaction front. Left: the front is linear and stays parallel to itself (spatially uniform thermal powers, or local linearization). Top (bottom, resp.): $\dot{Q}_{reac} > \dot{Q}_{sens}$ ($\dot{Q}_{reac} < \dot{Q}_{sens}$ resp.). Right: v_T isn't uniform. Top: the front rotates due to external heat exchange. Bottom: the impact of the temperature increase on the reaction rate exceeds that of the reactants consumption ($\partial \dot{Q}_{reac} / \partial z > 0$).

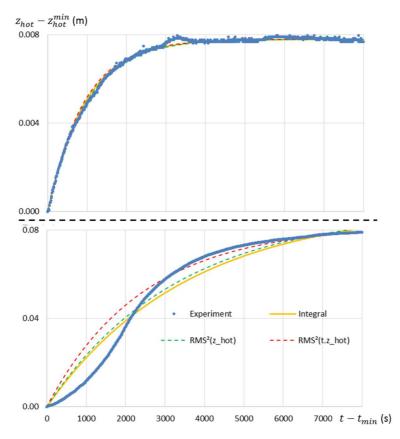


Figure B.1 Comparison of the equivalent exponential functions obtained by three different methods to the experimental results, for $T_{set} = 440^{\circ}$ C (top) and $T_{set} = 400^{\circ}$ C (bottom). The position is offset so the 0 value of the graph corresponds to $\{t^{min}, z_{hot}^{min}\}$ for each experiment.

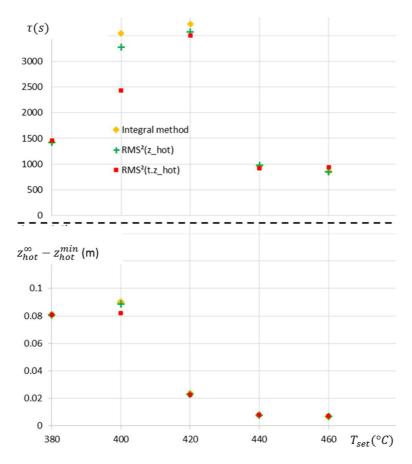


Figure B.2 Comparison of the $\{\tau, z_{hot}^{\infty}\}$ obtained by three different methods. The values for $T_{set} = 410^{\circ}C$ are not reported because the only relevant available information is that the corresponding τ is too long to be determined.

Load #	Catalyst mass	Alumina mass
outlet zone	0	6.007
1	0.1521	2.9483
2	0.1527	2.8308
3	0.1494	2.8625
4	0.1580	2.8570
5	0.1455	2.8520
6	0.1545	2.8706
7	0.1563	2.8760
8	0.1507	2.8651
9	0.1533	2.8545
10	0.1527	2.8740
inlet zone	0	6.0535

Table 1. Partial loads of the reactor. Masses are expressed in grams.

Experiment #	<i>T_{set}</i> (°C)
1	380
2	400
3	410
4	420
5	440
6	460

Table 2. Temperature setpoint of the experiments.