Skip to Main content Skip to Navigation
Journal articles

In-situ measurements of energetic depth-limited wave loading

Abstract : An extensive database of in situ measurements of wave impact pressure on the wall of a composite breakwater and associated explanatory variables (i.e., waves, wind, and water level) was collected in a particularly high-energy wave environment. Due to the bottom profile, which includes a wide mound of concrete blocks with a seaward edge that rises to the Lowest Astronomical Tide level over a large distance, most waves break before reaching the monitored barrier, making the data set representative of depth-limited wave loading. Maximum pressure is consistently found at the sensor position closest to the mean free surface, and statistically, a decrease of maximum pressure with the altitude is observed. Nevertheless, the database also shows a wide variety of vertical profiles of maximum pressure. A detailed analysis of the pressure signal shows that there are two impact classes associated with large pressure values. The first is mostly observed during stormy conditions with relatively slow pressure variations over time and a fairly uniform spatial distribution. The second class exhibits very limited pressure peaks in time and space and is most often observed during moderate sea states and high water levels. The pressure signals for each class agree well with the prediction of the PROVERB [35] impact classification based on breakwater dimensions,
Document type :
Journal articles
Complete list of metadata
Contributor : Stéphane Abadie Connect in order to contact the contributor
Submitted on : Tuesday, June 7, 2022 - 7:38:35 AM
Last modification on : Friday, July 8, 2022 - 3:20:21 AM
Long-term archiving on: : Thursday, September 8, 2022 - 6:08:32 PM


Files produced by the author(s)



Pierre-Antoine Poncet, Benoit Liquet, Benoit Larroque, Frank d'Amico, Damien Sous, et al.. In-situ measurements of energetic depth-limited wave loading. Applied Ocean Research, Elsevier, 2022, 125, pp.103216. ⟨10.1016/j.apor.2022.103216⟩. ⟨hal-03689145⟩



Record views


Files downloads