Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption - Université de Pau et des Pays de l'Adour Access content directly
Journal Articles Processes Year : 2021

Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption

Abstract

In this work, polymerizations of styrene (St) in the presence of divinylbenzene (DVB) as a crosslinking agent and sodium 4-vinylbenzenesulfonate (VBS) have been performed in Pickering emulsions, using silica nanoparticles (SNps) as stabilizing agents and ammonium persulfate as a hydrophilic initiator. In oil-in-water Pickering emulsions with alkaline continuous phase (pH = 9) at 1, 2, and 3 wt% DVB (relative to St), polydisperse spheroid copolymer submicronic nanoparticles were obtained. Comparatively, polymerizations performed in Pickering emulsions with acidic continuous phase (pH = 5) allowed preparing St-co-DVB microspheres with core–shell structures at 1 wt% DVB and St-co-DVB hybrid monoliths with bi-continuous morphologies at 2 and 3 wt% DVB. It is noteworthy that this work reports Pickering emulsion polymerization as a new strategy for preparing hybrid percolated scaffolds with bi-continuous porosity. The proposed mechanisms originated by pH, DVB, and VBS and the drastic impact caused on the final morphology obtained, either hybrid particles or monoliths, are discussed herein.
Fichier principal
Vignette du fichier
processes-09-01820.pdf (30.76 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03418825 , version 1 (08-11-2021)

Identifiers

Cite

Benoit Fouconnier, M. Ali Aboudzadeh, Francisco López-Serrano. Silica-Supported Styrene-Co-Divinylbenzene Pickering Emulsion Polymerization: Tuning Surface Charge and Hydrophobicity by pH and Co-Aid Adsorption. Processes, 2021, 9 (10), pp.1820. ⟨10.3390/pr9101820⟩. ⟨hal-03418825⟩
45 View
38 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More