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Abstract: Sildenafil citrate (SLC) is a frequently used medication (Viagra®) for the treatment of
erectile dysfunction (ED). Due to its poor solubility, SLC suffers from a delayed onset of action
and poor bioavailability. Hence, the aim of the proposed work was to prepare and evaluate solid
dispersions (SDs) with hydrophilic polymers (Kolliphor®P188, Kollidon®30, and Kollidon®-VA64),
in order to enhance the dissolution and efficacy of SLC. The SLC-SDs were prepared using a solvent
evaporation method (at the ratio drug/polymer, 1:1, w/w) and characterized by Differential Scanning
Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning
electron microscope (SEM), drug content, yield, and in vitro release studies. Based on this evaluation,
SDs (SLC-KVA64) were optimized, with a maximum release of drug (99.74%) after 2 h for all the
developed formulas. The SDs (SLC-KVA64) were further tested for sexual behavior activity in male
rats, and significant enhancements in copulatory efficiency (81.6%) and inter-copulatory efficiency
(44.9%) were noted in comparison to the pure SLC drug, when exposed to the optimized SLC-
KVA64 formulae. Therefore, SD using Kollidon®-VA64 could be regarded as a potential strategy for
improving the solubility, in vitro dissolution, and therapeutic efficacy of SLC.

Keywords: erectile dysfunction; Kolliphor®P188; Kollidon®30; Kollidon®-VA64; polymer; silde-
nafil citrate

1. Introduction

Erectile dysfunction (ED) is the inability of a male to achieve and maintain erection for
a sufficient period of time for satisfactory intercourse with a counterpart female partner [1].
It is also referred to as male impotence. ED is common medical problem that directly affects
sexual wellbeing and quality of life. Presently, millions of men around the world have
some degree of ED, and more than twice that number are anticipated to be affected by
2025 [2,3]. Men suffer from ED due to the rise in synthetic hormone levels present in our
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diet/environment and a nutritionally poor and imbalanced diet, resulting in low levels of
testosterone formation in the body.

Sildenafil citrate (SLC) is a potent phophodiasterase-5 inhibitor, marketed under
the brand name of Viagra. SLC is an orally administered medication, selectively used
to treat ED and pulmonary hypertension (PH). SLC absorbs quickly and acts within
1 h of oral administration, but due to a low aqueous solubility and hepatic first pass
metabolism (~ 80% of administered dose), its relative bioavailability is 41% [4,5]. The
solubility and bioavailability of SLC can improved by various means, such as, cyclodextrin
complex [6,7], orodissovable films [8], dry foam tablets [9], salts and co-crystals [10], Self-
nanoemulsifying drug delivery systems (SNEDDS) [11], and spray dried amorphous solid
dispersions [12]. The advantages of SD have been mentioned in many investigations,
including the improvement of dissolution rate and efficacy of poorly water insoluble
drugs [13,14].

Solid dispersion (SD) is an efficient approach to improve the solubility and bioavailabil-
ity of Biopharmaceutical classification system (BCS) II and IV class drugs, which involves
dispersion of active ingredients within an inert carrier in a solid state [15,16]. The selection
of carrier for the preparation of SDs is very important and directly affects the efficacy and
stability of the formulation. Thermodynamically unstable SDs have the tendency to recrys-
tallize into amorphous drug during storage, even with traces of crystalline drug left during
preparation and long storage periods [17]. Therefore, complete amorphous SD formation
is important, to avoid recrystallization and hence improve the physical properties of the
drug. The encapsulation of drugs within hydrophilic polymeric carriers induces better
wettability and particle micronization; the main procedure by which SDs improve the
solubility and bioavailability of poorly soluble drugs. Hydrophilic polymer carriers play
a vital role in increasing the dissolution and bioavalibility of poorly soluble drugs. The
function of polymers in formulating SDs is to impart stability and solubility, and modify
the dissolution rate. Various polymeric carriers, notably water soluble drug carriers such
as polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), with different molecular
weight grades have been used for the preparation of SDs and solid solutions. Cellulose
derived natural polymers such as hydroxy propyl methyl cellulose acetate succinate (HPM-
CAS), ethyl cellulose (EC), and hydroxypropyl methyl cellulose (HPMC) have the desired
physicochemical properties, and, hence, they are extensively used in formulating SDs. PEG
enables a disordered crystalline state of the drug and forms amorphous interstitial solid
solutions by encompassing the drug entity in the interstitial spaces of the polymeric carrier.
Glass solution is the term devised for SDs in which hydrophilic polymeric carriers are used
to increase the solubility; especially for BCS class II and IV. In order to molecularly dissolve
the drug, a large quantity of the hydrophilic polymer is used, which in turn increases the
physical instability of the dispersions due to phase separation. The mechanisms involved
in the improved solubility and dissolution include the detachment of drug molecules as
the hydrophilic carrier dissolves, subsequently forming a supersaturated solution of the
drug [18–22]. A study on SDs using a ibuprofen model drug revealed that polymers under
the trade names “poloxamer 407” and “poloxamer 188” could increase the solubility and
reduce the crystal growth of the drug with their coexistence in the polymeric dispersion,
which could have been due to the disruption of the ibuprofen and formation of hydrogen
bonds between the drug and polymer [23].

Another polymeric carrier, produced under the trade name Kolliphor®P 188 and
commercially available through the BASF corporation, acts as a co-emulsifier in creams,
an emulsifier for skin delivery applications, and solid and liquid dispersions [24]. It is a
synthetic tri-block copolymer, containing a central hydrophobic chain of polyoxypropylene
linked by two hydrophilic chains of polyoxyethylene. The generic name of this nonionic
linear copolymer is poloxamer 188 (P188), the letter P indicates the state of the polymer (as
a powder). Poloxamer 188 (P188) copolymer has been approved by the FDA as a blood
thinner and is used pharmaceutically as a surfactant in toothpastes and mouth washes.
The nature of the conforming blocks gives Kolliphor®P 188 amphiphilic and surface active



Polymers 2021, 13, 3512 3 of 15

properties, which vary depending on its poly(propylene oxide) and poly(ethylene oxide)
contents. Poloxamer 188 containing 80% ethylene oxide acts as a water soluble polymeric
carrier, used in solid dispersions to improve the solubility and dissolution rate of poorly
water soluble active pharmaceutical ingredients (APIs). Kolliphor®P 188 facilitates solubi-
lization process by micelle formation, in which the drug is enclosed in a hydrophobic core
externally covered by a polar hydrophilic head. SDs prepared with ploxamer are reported
to enhance the solubility and dissolution rate of the hydrophobic drug, Ebastine [25].

Kollidon®30 is another water soluble drug carrier (from BASF Germany) that is a
polyvinyl-pyrrolidone derivative with a molecular weight of 44,000–54,000 g/mol, transi-
tion temperature of 149 ◦C, and soluble in both aqueous and organic solvents. Commonly
called povidon(e), poly(1-vinyl-2-pyrrolidone), povidonum, and polyvidone. Kollidon®30
is widely used in SDs to improve the solubility and dissolution rate of the drugs by forming
a water soluble complex with insoluble drugs. Co-precipitation and co-milling technolo-
gies are reported to increase the dissolution rate and bioavailability of water insoluble
drugs with the usage of Kollidon®30. Amorphous solid dispersions (ASDs) prepared by
Kollidon®30 were reported to improve the efficiency of nifedipine [26,27].

A copovidone with an exceptionally high binding capacity, traded as Kollidon®VA 64
and produced by BASF, Germany, has applications as a dry binder for direct compression
tableting and as a soluble binder for granulation. These properties make it an attractive
and cost-effective alternative to natural binders. Kollidon VA 64 was first used to prepare
Lopinavir-Ritonavir combination SDs by Abbott laboratories; thereafter, the solubility of
many APIs was increased thanks to copovidone. This copolymer of vinyl-pyrrolidone and
vinyl-acetate in a ratio of 6:4 possess a transition temperature (100 ◦C) and degrades at
temperature (230 ◦C) that allow using APIs of varied polarity and with a wide melting
temperature range, and it is extensively employed in hot melt extrusion (HME) and spray
drying solid dispersions (SDSDs). Single-phase glassy solutions formed by copovidone,
in which API was amorphously lodged and dissolved along with the water soluble car-
rier, controlling the process polymer, improved the dissolution rate [28,29]. Moreover,
copovidone-based SDs have also been found to generate nanoparticles during the process
of mass conversion from solid to liquid (dissolution), contributing to the improved solubil-
ity and bioavailability of the drug. Recently, Moseson et al. [30] reported that copovidone
act as crystal nucleation and growth inhibitor by polymer adsorption on the crystalline
drug surface, thus improving the dissolution profile.

This study focuses on the influence of hydrophilic polymers in the dissolution en-
hancement of SLC. Here, the prepared SDs transformed the crystalline SLC drug into an
amorphous state. The interaction of polymers and SLC in SDs was evaluated and opti-
mized by DSC, FTIR, XRD, SEM, and in vitro release studies. The optimized SD (SLC-K64)
showed enhanced dissolution, due to the improve wetting properties of the drug. The
SLC-K64 formulae significantly improved the sexual behavior in male rats. The goal of the
current study was to develop and optimize a SD that could extend the penile erection in
male rats and be a potential approach for the treatment of erectile dysfunction.

2. Materials and Methods
2.1. Materials

Sildenafil citrate (SLC) was obtained as a gift sample from Jazeera Pharmaceutical
Industry (JPI), Riyadh, Saudi Arabia. Kolliphor®P188 (K188), Kollidon®30 (K30) and
Kollidon®-VA64 (KVA64) were received as a gift sample from BASF Co., Ltd. (Lud-
wigshafen, Germany). All solvents and chemicals used for the study were pure and
analytical grade.

2.2. Preparation of SLC Solid Dispersion by Solvent Evaporation

The solid dispersions of SLC with each of the polymers (Kolliphor®P188, Kollidon®30
or Kollidon®-VA64) were prepared (at the ratio drug/polymer, 1:1, w/w) using a solvent
evaporation method [31]. Briefly, an accurately weighed amount of SLC and polymer
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was dissolved in 60 mL of ethanol and water mixture (1:1, v/v). The resultant solution
was transferred into round bottom flask and evaporated on a rotary evaporator “(Buchi
Rotavapor R-215, Essen, Germany)” at 60 ◦C and 50 rpm for 4 h (Figure 1). The solids
retained in the flask were dried under a vacuum overnight to remove residual solvent. The
final powder was ground into fine particles and stored for further use.
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2.3. Practical Percentage Yield

The yield of the process was calculated to determine the efficiency of the prepa-
ration process. SDs were collected and the percentage yield was estimated using the
following equation.

Yield (%) = (Practical weight of the SD)/(Theoretical weight of SLC + Polymer) × 100

2.4. Drug Content Estimation

Drug content was estimated by dissolving 50 mg equivalent weight of SLC in methanol.
The solution was then filtered through a syringe filter (0.45 µm), the filtrate was suitably
diluted with distilled water and analyzed for the quantity of drug using a UV spectropho-
tometer at 291 nm against a blank using distilled water (UV-visible spectrophotometer,
Jasco 645, Tokyo, Japan).

2.5. Differential Scanning Calorimetry (DSC) Studies

DSC spectra of pure SLC, and their solid dispersions (SLC-K188, SLC-K30, and SLC-
KVA64) were recorded using a DSC instrument (SCINCO, DSC N-650, Seoul, Korea) at the
temperature range of 50.0–250.0 ◦C, at a heating rate of 10 ◦C/min. The instrument was
purged with nitrogen gas at a flow rate of 20 mL/min. The DSC apparatus was connected
with a sample holder and cooling chamber [32]. Each sample was weighed accurately
(approx. 5 mg) and pressed into a hermetically sealed aluminum pan.

2.6. Fourier Transform Infra-Red (FTIR) Spectroscopy

The FTIR spectra of pure SLC and their solid dispersions (SLC-K188, SLC-K30, and
SLC-KVA64) were recorded using an FTIR spectrometer (Jasco FTIR Spectrophotometer,
Tokyo, Japan). Each sample was ground with crystalline potassium bromide using a
glass mortar and pestle into a very fine particles, and pressed into transparent film. The
transparent film was kept on a sample holder and the spectra was recorded using spectra
manager software (Jasco, Tokyo, Japan) [33].
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2.7. Powder X-ray Diffraction (PXRD) Studies

The PXRD pattern of pure SLC and solid dispersions (SLC-K188, SLC-K30, and SLC-
KVA64) were recorded with an Ultima IV Diffractometer (Rigaku Inc. Tokyo, Japan at
College of Pharmacy, King Saud University, Riyadh, KSA). The set parameters for PXRD
were 0–60◦ (2θ) at a 10◦/min scan speed. The anode tube of the instrument used was
“Cu with Ka = 0.1540562 nm with mono-chromatized graphite crystal”. The spectra was
recorded using a voltage and current of 40 kV and 40 mA, respectively [34].

2.8. Scanning Electron Microscopy (SEM)

The morphology of pure SLC, SLC-K188, SLC-K30, and SLC-KVA64 was observed
under SEM equipment (JEOL JSM-5900-LV, Tokyo, Japan) operated at 15 KV. The samples
were coated with gold using a sputter coater under a vacuum and analyzed using SEM [33].

2.9. In Vitro Release Studies

In vitro release studies of SCL from the prepared solid dispersions (SLC-K188, SLC-
K30, and SLC-KVA64) compared to pure SLC drug were performed using an USP-2
dissolution apparatus (Fiber optic dissolution system, Model Distek 2500i, Software Rev
1.02, North Brunswick, NJ, USA). Briefly, an accurately weighed sample (equivalent to
50 mg of SLC) was dispersed in a dissolution basket containing 900 mL of phosphate
buffer (pH 6.8). The dissolution apparatus was set to run at 100 rpm at 37 ± 0.5 ◦C. At
a predetermined time interval, 5 mL of sample was withdrawn, compensated with fresh
media, and analyzed for drug content using UV spectroscopy at 291 nm [35]. Each sample
was analyzed in triplicate.

2.9.1. Mean Dissolution Time (MDT)

Model independent approaches such as mean dissolution time (MDT) were assessed
to study the effect of different polymers within the SDs [36]. The rate of drug dissolved of
each SD was expressed by MDT and was calculated using the following equation:

MDT =
∑n

j=1 t∗j ∆Mj

∑n
j=1 ∆Mj

where, (j) is the number of the sample (SDs), (n) is the number of samples in the dissolution
study, (t*

j) is the midpoint time between t and t (j − 1), and (∆Mj) is the additional amount
of drug dissolved between t and t (j − 1).

2.9.2. Similarity Index (F2)

The similarity index or fit factor of the prepared SDs was assessed, as suggested by
Moore and Flanner, comparing the dissolution profiles of the test (SDs) with the reference
(SLC). The following equation was used to calculate the f 2 value.

f2 = 50 X log{[1 + (1/n) ∑n
t−1 (Rt− Tt )2]

−0.5
× 100}

where, f 2 means similarity index, n stands for dissolution time, and Rt and Tt denote
reference (pure drug) and test (SDs) dissolution values at time t. If f 2 values were <50,
this suggests a significant difference between the dissolution profiles under comparative
study [34,36].

2.9.3. Drug Release Kinetics

To study the release kinetics, dissolution data were then fit to the drug release kinetic
models, and the correlation coefficient (R2) was calculated using regression analysis. The
zero-order rate describes the concentration independent release kinetics from the SDs,
first-order specifies the concentration dependent release rate, the Higuchi’ model depicts



Polymers 2021, 13, 3512 6 of 15

the release of drug based on Fickian diffusion, whereas the Korsmeyer–Peppas model
equation demonstrates a relationship between the drug release from the polymeric SDs.

Qt = Q0 + k0t (Zero-order)

logQt = logQ0 − k1t / 2.303 (First-order)

Qt = kHt1/2 (Matrix diffusion)

Mt/M∞ = ktn (Korsmeyer-Peppas)

where Qt (dissolution of drug over time t), Q0 (amount of drug dissolved in diffusion
medium at zero time), k0 (zero order constant), k1 (first-order constant), and kH (Higuchi
model constant). Mt and M∞ are the cumulative drug release at time t and infinite time,
respectively; k is the rate constant of drug-polymer particle’s feature, t is the release time.
Diffusional exponent (n) indicates the drug release mechanism. When n = 0.45 (Case I or
Fickian diffusion), 0.45 < n < 0.89 (anomalous behavior or non-Fickian transport), n = 0.89
(Case II transport) and n > 0.89 (Super Case II), based on the exponent value release
mechanisms reported.

2.10. In Vivo Sexual Behavior Studies
2.10.1. Animals

Male (250–300 g) and female albino rats (150–200 g) were used for the sexual behavior
study [37]. All animals were bred in the lab care unit at the College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia. Rats were kept in separate
cages with access to food and water ad libitum. The study protocol was reviewed and
approved by the “Animal Ethics Committee (Approval number: BERC 005-05-19), College
of Pharmacy, Prince Satam Bin Abdulaziz University, Alkharj, Saudi Arabia”.

2.10.2. Preparation of Male and Female Rats

The male rats were trained sexually with receptive females three times a day for four
days before commencement of the experiment. The male rats that did not show any sexual
activity during training were excluded from experiment. Eighteen sexually active male rats
were selected for the sexual activity of sildenafil citrate and its optimized solid dispersion.
The female rats were made receptive by administering estradiol benzoate (10 mg/kg body
weight) and progesterone (1.5 mg/kg body weight) subcutaneously, 48 h and 4 h prior to
pairing with male rats, respectively. The sexual activity of the female rats was confirmed
prior to the test by exposing them to male rats. The most receptive female rats were marked
and selected for the study.

2.10.3. Experimental Procedure

The aphrodisiac experiments were performed as per a previously reported method [35].
Eighteen healthy and sexually active male rats (250–300 g) were selected for the study. They
were divided into three groups of 6 animals, each group was isolated alone in separate
cages during the study. Group I (Control) received 1% w/v sodium carboxymethyl cellulose
(Na-CMC) as a vehicle at rate of 5 mL/kg. Group II (reference) received SLC at a dose of
5 mg/kg, and, finally, group III (optimized formulation) received formulation (equivalent
to 5 mg/kg SLC pure). The control vehicle, SLC and formulation were administered as a
single dose by orogastric cannula one hour before the start of the study.

2.10.4. Monitoring of Sexual Behavior

The most sexually active female rats were selected for the study. The experiment was
performed at 19:00 h in a noiseless room under dim red light in transparent cages. The
single female rat was introduced into the cage of single male rat for 15 min, considered
as an adaptive period, and after this period, the females were separated from the male
cages, then control (Na-CMC), SLC suspension, and formulation were administered orally.
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The treated female rat was again paired with same male rat in the cage, and the sexual
behavior of the male rat was immediately started and continued for the first two matings.
The following sexual behavior parameters were monitored and noted as described in a
previous study [35,38].

The following definitions were considered for this test: mounting latency (ML), the
time from the pairing of the female and male in one cage and first mount; intromission
latency (IL), the time from the pairing of a female and male in one cage and first intromission
(vaginal penetration) by the male; mount frequency (MF), the number of mounts before
ejaculation, that is lifting of the male’s fore body over the hind body of the female and
clasping her flanks with his forepaw; intromission frequency (IF), the number of vaginal
penetrations before ejaculation; ejaculation latency (EL), the time from the first vaginal
penetration of a series to the ejaculation; post-ejaculatory interval (PEI), the time from
ejaculation to the first vaginal penetration of the next copulatory series. In the second
mating only the EL was recorded. Percentage copulatory efficiency (%CE) was calculated
using the following equation:

%CE = IF/MF × 100
%ICE = IF/IF + MF × 100

2.11. Statistical Evaluation

The significance of difference between the means was determined by one-way analysis
of variance (ANOVA) with a post-hoc test. A p-value < 0.05 was considered significant.

3. Results and Discussion
3.1. Practical Percentage Yield

The percentage yield of prepared SDs was determined, to ascertain the loss during the
solvent evaporation process. SDs prepared by solvent evaporation showed percentage yield
values ranging between 93 and 95.8%. The high percentage yield indicates the minimum
loss, homogeneity, and accuracy of the process, and hence the suitability for scale-up.

3.2. Drug Content Estimation of Solid Dispersions

Drug content estimation determined the uniformity of the drug in the polymeric
dispersion, the value of drug estimation was found to be in the range of 97–98.99%.

3.3. DSC Studies

DSC is a thermal analytical technique used in formulation development to understand
the physicochemical properties of pure drugs and their formulations. The presence of crys-
tallinity of pure SLC was detected by DSC spectra, because of a sharp endothermic peak at
207 ◦C (Figure 2), which was close to the previous reported data [39]. The DSC peaks indi-
cate that SLC does not have any exothermic/degradation peaks, confirming its stability up
to a temperature of 250 ◦C. The solid dispersions SLC-K188 and SLC-K30 showed a broad
endothermic peak at 198 ◦C and 192 ◦C with reduced intensity, respectively, indicating
their partial crystallinity. However, SLC-KVA64 showed the complete disappearance of
endothermic peaks corresponding to SLC drug peaks, indicating the transformation of
crystalline phase to amorphous phase, due to dissolution into the KVA64 polymer matrix.
The SLC drug did not crystallize in the SLC-KVA64 system, due to complete dispersion in
the polymer matrix.
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3.4. FTIR Studies

FTIR spectra of pure SLC and solid dispersions SLC-K188, SLC-K30, and SLC-KVA64
are presented in Figure 3. The pure SLC showed characteristic peaks in frequency at
1170 cm−1 and 1265 cm−1 for asymmetric and symmetric SO2 bands. A strong peak at
1495 cm−1 could be assigned to the –COOH group present in citric acid. The two strong
peaks could be attributed to the –N–H bend and –N–H stretching at frequency 1582 cm−1

and 3301 cm−1; these assigned peaks confirmed the purity of the drug [35,40]. Compared to
the pure SLC, the characteristic peak of SLC was absent or weakened in the prepared solid
dispersions (SLC-K188, SLC-K30, and SLC-KVA64), confirming the successful dispersion
of polymers with drug [41].

3.5. PXRD Studies

PXRD spectral analysis is a useful tool for identifying the crystalline/amorphous
nature of a solid state powder. The PXRD patterns of pure SLC, SLC-K188, SLC-K30,
and SLC-KVA64 are shown in Figure 4. The PXRD pattern of pure SLC revealed several
diffraction peaks between 0 and 60◦ (2θ), which confirmed the crystalline nature of the
drug [37,41]. The solid dispersions SLC-K188 and SLC-K30 showed a few diffraction peaks
corresponding to SLC with reduced intensity, indicating partial crystallinity. However, the
PXRD pattern of the SD, SLC-KV64, showed a typical profile of an amorphous compound,
suggesting that the polymer KVA64 inhibited the drug crystallization by reordering of
the crystal lattice; this findings strongly supports the DSC analysis [42]. The amorphous
powder influenced the faster dissolution of the drug, due to increased internal energy and
molecular motion, which improved the thermodynamic property as compared to the pure
SLC crystalline drug. The reduction of crystallinity of the drug could have been due to
dispersion of the polymers (K188, K30, and KVA64) with the SLC drug [43].
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3.6. SEM

Crystalline and amorphous solid dispersion can be differentiated visually using SEM
images. According to the SEM images, the high crystallinity of SCL evidenced a large
needle shaped powder. The SEM images of SDs (SLC-K188, SLC-K30, and SLC-KVA64)
did not show any crystalline structure and the SDs appeared as aggregates of irregular
shape. As can be seen, these polymers strongly disrupted the morphology of the SDs, due
to transformation from a crystalline to amorphous state (Figure 5). The crystallinity of SLC
was already confirmed by the XRD and DSC studies.
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3.7. In Vitro Release Studies

Researchers have explored solid dispersion/inclusion complexation to improve the
solubility, permeability, oral bioavailability, and therapeutic effectiveness of SLC through
its encapsulation with polymers, with the aim of achieving an enhanced drug release [8].
In vitro release profiles of SLC from the prepared solid dispersions (SLC-K188, SLC-K30,
and SLC-KVA64) are presented in Figure 6. Enhanced dissolution of SLC was noted in
all solid dispersions. The pure SLC drug showed a much lower and incomplete release
(29.08%) during the time-scale of the study (2 h). However, an almost complete release of
SLC was observed from all the prepared solid dispersions. The maximum drug release was
recorded by the SLC-KVA64 system (99.74%) after 2 h. The improvement in dissolution rate
of SLC in a solid dispersion can be attributed to the dispersion of hydrophilic polymers,
due to the wettability of the drug, which resulted in an enhancement in solubility [44].
These results suggest that the use of hydrophilic polymers as the carrier transformed the
SLC crystals into an amorphous state, which improved the solubility of the drug. However,
the highest release of SLC from SLC-KVA64 could possibly have been due to the maximum
amorphization of SLC, wetting properties of SLC-KVA64 polymer with SLC.
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Figure 6. In vitro release profile of pure SLC, SLC-K188, SLC-K30, and SLC-KVA64.

The estimated values of similarity factor (f2) and MDT for all solid dispersions are
summarized in Table 1. It was found that the f2 values for all formulae (SLC-K188, SLC-K30,
and SLC-KVA64) were less than 50, suggesting all formulae are statistically not different
(p > 0.05). The mean dissolution time is an indication of the dissolution process. The MDT
for SLC-K188, SLC-K30, and SLC-KVA64 were estimated as 39.61, 37.65, and 35.52 min.
The lowest MDT was measured for SLC-KVA64 among all the formulae, indicating a faster
release of drug compared to the other formulae. However, the release kinetic models of
fitted f and coefficient of correlation (R2) values were obtained as first order (R2 = 0.999),
matrix diffusion (R2 = 0.996), and matrix diffusion (R2 = 0.998) for the formulae SLC-K188,
SLC-K30, and SLC-KVA64, respectively.

3.8. In Vivo Sexual Behavior Studies

In this study, the SLC-KV64 formulation was tested and compared with pure SLC
for its aphrodisiac effect on male rats. The male rats showed an improved sexual activity
towards their female rat partner, shown by their eager and quick movement and visible
signs of pre-copulatory action, such as anogenital exploration, body sniffing, and moving
around, which finally resulted in mounting [35]. The data presented in Tables 2 and 3 show
that SLC (5 mg/kg) significantly reduced the ML (67.27 ± 2.18 s) and IL (108.15 ± 3.52 s)
and caused a significant increment in the MF (8.57 ± 0.37) and IF (5.36 ± 0.36) compared
to the control. MF and IF are important indicators to measure the vigor, libido, and
potency and that reflect the sexual motivation and efficiency of erection, respectively. The
increase in MF and IF following administration of SLC-KV64 formulation was observed,
suggesting the improved sexual behavior of rats [45]. As ML and IL values decreased
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following administration of SLC-KV64, this suggests stimulation of sexual motivation
and arousal [46]. One formulation (SLC-KV64) also prolonged ejaculatory latency in the
first and second series (EL-1 and EL-2) and caused a significant reduction in the post
ejaculatory interval (PEI) compared to the control group. Due to EL and PEI events, the
refractory period between the first and second series of mating, revealed that SLC in
the formulation improved the sexual activity. The CE (%) and ICE (%) are presented
in Figures 7 and 8. Improvements in CE (81.6%) and ICE (44.9%) were observed when
rats were exposed to optimized SLC-KVA64 formulae in comparison to the pure SLC
drug [37]. All observed sexual activity parameters of the optimized SLC-KVA64 were
remarkably improved compared to the control and pure SLC drug; these parameters are
statistically significant.

Table 1. Similarity factors and release kinetics of prepared SDs.

Solid
Dispersions

MDT
(min)

f2

Correlation Coefficient
(R2)

Zero
Order

First
Order

Matrix
Diffusions

Korsmeyer-
Peppas N

SLC-K188 39.61 25.22 0.910 0.999 0.996 0.991 0.524
SLC-K30 37.65 21.68 0.907 0.989 0.996 0.992 0.495

SLC-KVA64 35.52 18.59 0.876 0.840 0.998 0.995 0.411

Table 2. Effect of SLC-KV64 on the mount latency (ML), mount frequency (MF), intromission latency
(IL), intromission frequency (IF), and copulatory efficiency (CE) of male rats.

Groups ML (s) MF IL (s) IF

NC 122.71 ± 5.27 4.24 ± 0.48 245.15 ± 7.27 2.42 ± 0.15
SLC-STD 67.27 ± 2.18 * 8.57 ± 0.37 * 108.15 ± 3.52 * 5.36 ± 0.36 *

SKV64 59.16 ± 2.11 *‡ 10.36 ± 0.42 *‡ 97.78 ± 3.16 *‡ 8.45 ± 0.50 *‡

Values are expressed as mean ± S.E.M., n = 6 rats/group. * indicates significance compared to NC
group at p < 0.05. ‡ indicates significance compared to SLC-STD group at p < 0.05.

Table 3. Effect of SLC-KV64 on the ejaculation latency in the 1st series (EL-1), post ejaculatory interval
(PEI) and ejaculation latency in the 2nd series (EL-2) of male rats.

Groups EL-1 (s) PEI (s) EL-2 (s)

NC 376.62 ± 8.72 496.64 ± 14.73 395.20 ± 7.12
SDL-STD 423.16 ± 11.46 * 397.84 ± 8.46 * 421.22 ± 8.25 *

SKV64 458.38 ± 10.27 *‡ 370.50 ± 8.50 *‡ 449.20 ± 9.28 *‡

Values are expressed as mean ± S.E.M., n = 6 rats/group. * indicates significance compared to NC
group at p < 0.05. ‡ indicates significance compared to SLC-STD group at p < 0.05.
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4. Conclusions

In this study, SDs of SLC were prepared by solvent evaporation method using three hy-
drophilic polymers as drug carriers, namely Kolliphor®P188, Kollidon®30, and Kollidon®-
VA 64. The prepared SDs succeeded in improving the dissolution rate and sexual behavior
in male rats. A marked influence of the polymers on SCL dissolution was noted. All SDs
significantly improved the SCL dissolution compared to the pure drug. The optimized
SD (SLC-KV64) system showed the maximum enhancement in dissolution rate compared
to the pure SLC drug. The DSC and PXRD studies revealed the transformation of the
crystalline state of SLC to an amorphous state, which required the lowest energy for drug
solubilization. A significant improvement in sexual activity was observed in optimized SD
(SLC-KV64) administered male rats, compared to pure SLC drug. Finally, we concluded
from this research that the optimized SDs (SLC-KVA64) exhibited superior activity and
are a promising strategy for improving solubility, dissolution rate, and aphrodisiac effects
on male rats. Hence, the results suggest that the hydrophilic polymer Kollidon®-VA 64
could be an excellent carrier for enhancing the dissolution and therapeutic performance of
SLC drug.
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