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Abstract: recent industrial developments have resulted in an increase in use 
of so-called technology-critical elements (TCEs), for which the potential 
impacts on aquatic biota remain to be evaluated. In the present study, 
quantitative ion character activity relationships (QICARs) have been 
developed to relate intrinsic metal properties to their toxicity towards 
freshwater aquatic organisms. In total, 23 metal properties were tested as 
predictors of acute ec50 values for 12 data-rich metals, for algae, daphnids 
and fish (with and without species distinction). Simple and multiple linear 
regressions were developed using the toxicological data expressed as a 
function of the total dissolved metal concentrations. The best regressions 
were then tested by comparing the predicted ec50 values for the tces 
(germanium, indium, gold, rhenium and platinum group elements – pges – 
which include iridium, platinum, palladium, rhodium, and ruthenium) with 
the few measured values that are available. The eight ‘best’ QICAR models 
(adjusted r2 > 0.6) used m

2r as the predictor. For a given metal ion, this 
composite parameter, also known as the covalent index, is a measure of the 
importance of covalent interactions relative to ionic interactions. The 
toxicity of the tces was reasonably well predicted for most of the TCEs, with 
values falling within the 95 percent prediction intervals for the regressions of 
the measured versus predicted ec50 values. Exceptions included au(i) (all test 
organisms), au(iii) (algae and fish), pt(ii) (algae, daphnids), ru(iii) (daphnids) 
and rh(iii) (daphnids, fish). We conclude that qicars show potential as a 
screening tool to review toxicity data and flag ‘outliers’, which might need 
further scrutiny, and as an interpolating or extrapolating tool to predict TCE 
toxicity. 

KEYWORDS:Platinum group elements, precious metals, Ge, In, Re, Quantitative Ion 

Character Activity Relationships 
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INTRODUCTION 

Until the beginning of the 21st century, industrial uses of nonferrous metals were 

mostly focused on ‘base metals’, i.e., elements such as copper, lead, nickel or zinc, that 

are found in the first four rows of the Periodic Table of the Elements. However, recent 

developments in areas such as electrical engineering, computing, renewable energy 

technologies and medicine have expanded this range of metals. Gold, indium, 

germanium, rhenium and the platinum group elements (PGEs) belong to this group of 

newly-used ‘Technology-Critical Elements’ (TCEs), where the term ‘critical’ refers to 

the increasing technological importance of these elements and their limited number of 

sources (Gulley et al. 2018). Extensive ecotoxicological databases exist for the base 

metals, for example in the US-ECOTOX database (US EPA 2020) and the European 

ECHA database (ECHA 2020), and they are used in environmental risk assessments 

around the world. In the case of most TCEs, however, these data are still very scarce, 

limiting our ability to properly assess their possible environmental impacts.  

When new organic molecules are synthesized and are poised to enter commerce, 

Quantitative Structure-Activity Relationships (QSARs) can be used to predict their 

environmental fate and toxicity. These models relate the properties of the new molecule 

(e.g., water solubility, octanol-water partition coefficient) to its biological reactivity 

(Boethling and Mackay 2000). For metals, the development of such models has been less 

comprehensive since far fewer ‘new’ inorganic compounds have been introduced 

commercially compared to new organic chemicals. However, there have been a number 

of successful efforts to relate the toxicity of various base metals to their ionic properties 

(Walker et al. 2013). These Quantitative Ion Character Activity Relationships (QICARs) 
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have used ion properties such as electronegativity, softness, ionization potential and 

electrochemical potential as predictors (Kinraide 2009; Wang et al. 2016; Wolterbeek and 

Verburg 2001). To date, these models have been developed for and tested with data-rich 

metals and target species such as algae (Fujiwara et al. 2008; Hickey et al. 1991; Mu et 

al. 2014), daphnids (Kaiser 1980; Tatara et al. 1997; Wu et al. 2013) and fish (Ownby 

and Newman 2003; Wu et al. 2013). However, they have not been systematically tested 

with data-poor metals such as the TCEs.  

The objective of the present study was to develop robust organism-specific 

QICAR models for a wide range of data-rich metals, and then apply them to data-poor 

TCEs (germanium, indium, gold, rhenium and platinum group elements – PGEs – which 

include iridium, platinum, palladium, rhodium, and ruthenium) to predict their acute 

aquatic toxicity (algae, daphnids, fish) on the basis of their ionic properties. Many of the 

TCEs exist in oxidation states of +III or higher, which is not the case for the majority of 

the data-rich elements. Our study was thus designed to test whether this difference in 

oxidation state would affect the ability of QICARs developed for data-rich elements to 

predict the toxicity of the TCEs.  

The toxicological data used to construct the models and the values predicted with 

the models were expressed as dissolved EC50 values (total dissolved metal concentration 

that elicits a 50% response in the studied population). Given the important influence of 

metal speciation on metal bioavailability and toxicity, a second study was also conducted 

to predict toxicity from free metal ion concentrations and ionic properties. These results 

will be published in a follow-up paper. 
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MATERIALS AND METHODS 

QICAR modeling involves establishing a mathematical relationship between two 

separate databases. Here, these databases are a compilation of the ion characteristics of 

the metals in the two groups (the training set of data-rich metals and the prediction set of 

data-poor TCEs), and a compilation of the toxicological data that are available for each 

group. 

Building of the metal characteristics database 

To construct the metal characteristics database, the most significant metal 

characteristics that had been previously reported in QICAR studies were compiled 

(Walker et al. 2013). These characteristics can be grouped into five categories, i.e. 

physical properties (atomic weight – AW; atomic volume – V; density - ρ; melting point 

– MP; polarizability - α; molar refractivity – MR); electronic structure (atomic number – 

AN; ionization energy and potential – IP and ∆IP, respectively; electron affinity – E*); 

redox properties (oxidation number – ox; standard electrode potential -E0 and 

electrochemical potential, ∆E0); binding properties (ionic radius – r; covalent radius – 

CR; Van der Waals radius – Vdw; electronegativity – χm) and various composite indices 

(ionic potential – z/r, where z = the charge on the ion; ionic index – z2/r; covalent index 

χm
2r; covalent binding stability – ∆β; Pearson softness parameter – σp; absolute value of 

the first hydrolysis constant – log KOH; AN/∆IP). These ion characteristics were mostly 

found using the Handbook of physics and chemistry (Rumble 2018). Exceptions included 

σp (Ahrland 1968; Williams et al. 1982), log KOH (Academic Software 2001; Smith et al. 

2004) and ∆β, which was either retrieved from Newman and McCloskey (1996) or 
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calculated from stability constants found in the IUPAC (Academic Software 2001) or 

NIST databases (Smith et al. 2004).  

The first step of the database building was thus to compile the data and verify 

whether the metal characteristics were available for the metal training dataset, i.e., for 

Ag, Ca, Cd, Co, Cu, K, Mg, Mn, Na, Ni, Pb, Zn and for the studied TCEs, i.e. Au(I), 

Au(III), Ge (IV), Ir(III), In(III), Pd(II), Pd(IV), Pt(II), Pt(IV), Re(V), Re(VII), Rh(III), 

Ru(III), Ru(IV). When one of the ion characteristics was missing for a particular metal, 

the characteristic was eliminated from the modeling process. The second step was to 

perform a Principal Component Analysis (PCA) to determine correlations among metal 

characteristics, in order to reduce the number of characteristics to be included in the 

models. For the construction of the QICARs, we prioritized non-redundant metal 

characteristics that were available for the training metals and that best bracketed the 

characteristics for the data-poor TCEs. 

Preparation of the toxicity database 

Freshwater toxicological data were obtained from different sources, such as 

national curated databases and from specific searches of the recent literature for updated 

or missing data. Data were compiled for short-term exposures conducted with algae (48 

h, 72 h or 96 h, depending on the species), daphnids (48 h) and fish (96 h). Their 

measured responses (growth inhibition; immobilization; mortality) were noted, along 

with the species that had been tested, the experimental conditions (exposure duration, 

temperature) and details regarding the composition of the exposure media. For model 

construction, we only retained EC50 values that had been derived from toxicity tests 

where the metal concentrations had been measured (i.e., not just nominal metal 
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concentrations). The compiled EC50 values were analyzed for outliers using boxplot 

representations (data not shown). Values were considered as outliers when they fell 

outside the interval of three times the interquartile range (Addinsoft 2018). 

Growth inhibition was the only endpoint used for algae, whereas both immobility 

and survival were used as toxicity endpoints for daphnid tests. All the daphnid EC50 

values were pooled for a given metal, regardless of the endpoints, since no outliers were 

revealed with this approach. In the Cu and Cd fish databases, the toxicity tests were 

performed with different life stages (from larvae to adults). Since the study of outliers did 

not reveal any trends that would have justified the exclusion of certain life stages for any 

metals, results for these life stages were pooled. 

Model building 

Simple linear regressions (SLR) were constructed between each selected training 

metal characteristic (as well as its logarithm) and the logarithms of the mean measured 

EC50 values, without species distinction. The log-transformation of the metal 

characteristics was additionally performed to reduce their variances as compared to that 

of the series of -log EC50 values. A second set of SLRs was constructed with species-

specific EC50s for the species for which the number of independent tests was the largest, 

i.e., Pseudokirchneriella subcapitata for algae, Daphnia magna and Ceriodaphnia dubia 

for daphnids, and Oncorhynchus mykiss and Pimephales promelas for fish.  

In a second step, multiple linear regressions (MLR) were performed using a 

stepwise approach, with all the selected metal characteristics and their logarithms as input 

variables. To reduce the number of tested variables, we compared the variances of the -

log EC50 values with the variances of the metal characteristics and their log-transformed 
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values, using the Fisher test (α = 0.05). When the original values of a given metal 

characteristic had a variance similar to that of the -log EC50 values, the log transformed 

metal characteristics were not considered. The ‘entry’ parameter significance of the MLR 

was tested using a Student t test at α = 0.05 whereas the removal of a variable was tested 

at α = 0.1. Metal parameter multicollinearity was assessed using the Variance Inflation 

Factor (VIF; < 10 as an indication of negligible collinearity). The ‘best’ metal 

characteristics were then selected based on several goodness of fit statistics for the 

developed model: the highest adjusted r2 (r2
adj); the lowest root mean square error 

(RMSE); 

the highest F value with a p value lower than 0.05 (the F and p values being obtained 

with an Analysis of Variance (ANOVA) to test the significance of the model to predict 

the -log EC50 values based on the selected metal characteristics); the closeness of the 

Mallows Cp coefficient to the target value of Cp (Cp= k+1, k being the number of 

variables in the model), and the lowest AIC (Akaike’s Information Criterion). As was the 

case for the SLRs, MLRs were constructed with and without species distinction. 

The chosen models were then analyzed to determine if the assumptions for linear 

regression were met. The normality of the residuals was tested using the Shapiro-Wilk 

test (α = 0.05) whereas their lack of autocorrelation was assessed using the Durbin-

Watson (DW) test (Supporting information and Table SI-1). Results of both tests are 

provided directly in the text only when the assumptions were not verified. Otherwise, 

statistical results are given in Table SI-2. Once developed, the models were tested using 

the log-transformed average EC50 values for the TCEs. Model building and correlation 

statistics were performed using XLSTAT 2018.2 and higher (Addinsoft 2018). 
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RESULTS 

Metal characteristics database 

Almost all the metal characteristics were found for the training metals, with the 

exception of electron affinity (E*) values for Cd, Mg, Mn and Zn, which were indicated 

to be ‘not stable’ (Handbook of Chemistry and Physics – Rumble (2018)) (Table SI-3). 

For the studied TCEs, no IP or ∆IP values were found for Au(III), Ir(III), Pd(IV), Pt(IV), 

Re(V), Re(VII) and Ru(IV), whereas E0 and ∆E0 were missing for Re(V) (Table SI-4). 

However, the lack of data was the most acute for ∆β, σp and log KOH, with data available 

for only 5 out of 17 for ∆β, 8 out of 17 for σp and 11 out of 17 for log KOH, which thus 

precluded the use of ∆β, σp and log KOH in the subsequent model development. This 

situation reflects the lack of thermodynamic data describing the binding of these TCEs to 

inorganic ligands. 

The metal characteristics that remained at this stage for building the QICAR 

models were AW, V, ρ, MP, α, AN, r, CR, Vdw, m, z, z/r, z2/r and m
2r. Among these 

characteristics, only the values for V, AN, CR and Vdw bracketed those of the TCEs 

(Table SI-5), and they were prioritized over the other characteristics to construct the 

models in the subsequent steps. At this point, a PCA was performed with the 14 

remaining metal characteristics to identify possible redundancies among them (Figure 1). 

A first group of metal characteristics was composed of V, which correlated with α (r = 

0.889), CR (r = 0.931) and Vdw (r = 0.720). V was chosen because the range of its values 

for the training metals bracketed the V values for the studied TCEs and it represents two 

variables (V = AW/ρ). It was also chosen in preference to CR because of the potential 

difficulty in differentiating between CR and r. A second group of characteristics was 
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constituted of AN, which correlated with AW (r = 0.999) and ρ (r = 0.908). AN was 

chosen because, as was the case for V, its range of values for the training metals included 

the AN values for the studied TCEs. In the third PCA group, z2/r strongly correlated with 

z (r = 0.984) and z/r (r = 0.937). The ratio z2/r was chosen due to its prominence in earlier 

QICAR models (Newman and McCloskey 1996; Van Kolck et al. 2008). The 

electronegativity, m, correlates with ρ (r = 0.797), which had already been eliminated, 

and with m
2r (r = 0.777); both parameters were kept but were not used concurrently in 

the models. MP and r did not correlate with any other characteristics and were thus also 

kept. To summarize, V, AN, z2/r, χm or χm
2r, MP and r were retained to construct the 

QICAR models.  

Toxicity database 

Algae. Table SI-6 presents a summary of the algal toxicity data for the training 

metals. The lowest EC50 values are those obtained for Ag, with data ranging between 4.6 

× 10-9 and 1.7 × 10-7 M, and for exposure experiments conducted with various algal 

species. The cations Ca, K, Mg and Na have the highest EC50 values, within the mM 

range, which came predominantly from tests performed with P. subcapitata (except 

Chlorella sp. for the Mg data). Cadmium, Co, Cu, Ni and Zn have comparable EC50 

values (low µM) whereas Mn (5.6 × 10-5 M – 1.1 × 10-3 M) has higher EC50 values. These 

toxicological data were obtained from experiments performed on several algal species, 

except in the case of Co and Zn, the datasets for which were composed only of P. 

subcapitata values. EC50 values considering all algal species at the same time and P. 

subcapitata values only were analyzed for outliers, the numbers of which varied as a 

function of the metal (Table SI-6). The toxicological data for the studied TCEs were 
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much less extensive than those for the training metals (Table SI-7). Indeed, the largest 

dataset was the one for Pd(II) with only five EC50 values and was composed of tests 

performed on three different species, including P. subcapitata. Both Pd species, Pd(IV) 

and Pd(II), were found to be the most toxic of the TCEs, with EC50 values of 2.8 x 10-8 M 

for Pd(IV) and (1.7 ± 1.2) x 10-7 M for Pd(II) (mean ± standard deviation when n > 2). 

Six TCEs [Au(III), In(III), Rh(III), Ru(III), Ru(IV), Pt(IV)] have EC50 values ranging 

between 1.1 x 10-6 M [Ru(IV)] and 1.4 x 10-5 M ([In(III)]. The least toxic elements 

among the studied TCEs are Au(I), Ge(IV), Pt(II) and Re(VII), with EC50 values between 

1.0 x 10-4 M [Au(I)] and 1.2 x 10-3 M [Ge(IV)].  

Daphnids. The EC50 values for the training metals used to construct the daphnia 

models are presented in Table SI-8; comparable data for the TCEs are presented in Table 

SI-9. Among the studied metals, the cations Ca, Mg, Mn and Na are the least toxic with 

average EC50 values of about 1 x 10-2 M. Zinc and Co have comparable toxicity, with 

average EC50 values of (1.4 ± 1.1) × 10-5 M for Zn and (4.6 ± 2.7) × 10-5 M for Co. 

Cadmium, Cu and Pb toxicity values are in the µM range whereas Ag is the most toxic of 

the studied metals with EC50 values ranging between 1.0 × 10-9 M and 1.5 × 10-6 M. 

Several daphnia species were examined for each metal; for example, Ni toxicity was 

assessed using 13 different species. Nevertheless, D. magna and C. dubia were the most 

studied species. Each metal data set was examined for outliers, first by taking into 

account all species, then only D. magna and finally C. dubia (Table SI-8). Among the 

studied TCEs, Au(I) has the lowest EC50 value (6.9 x 10-7 M), whereas the toxicity of 

Au(III), Pd(II) and Pt(IV) are in the µM range. The least toxic TCEs are Ir(III), Pt(II), 
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Rh(III) and Ru(III), with EC50 values ranging between 1.6 x 10-5 M [Ir(III)] and 1.9 x 10-4 

M [Ru(III)] (Table SI-9). 

Fish. The compiled toxicity test data are presented in Table SI-10 (training 

metals) and in Table SI-11 (TCEs). Among the training elements and taking into account 

all the fish species, Ag is the most toxic metal with an average EC50 value of (2.0 ± 3.4) × 

10-7 M. The least toxic cation is Na with EC50 values ranging from 9.6 to 11 x 10-2, 

followed by Mg, Ca and K, the EC50 values of which are in the 1 x 10-2 M range. Lead 

and Cu were found to be more toxic (µM range) than Mn, Cd, Ni and Zn, based on their 

average EC50 values. However, a wide dispersion around the average EC50 values was 

observed for Cd (five orders of magnitude) and Ni (four orders of magnitude), which 

suggests that such comparisons of metal toxicity should be undertaken with caution. 

Although many fish species (n=24) were present in the database, the most studied species 

were O. mykiss and P. promelas for each of the studied metals. Pd(IV) is the most toxic 

TCE for fish with an EC50 value of 1.4 x 10-6 M, followed by both Au species with EC50 

values of 2.0 x 10-5 M for Au(I) and 4.6 x 10-5 M for Au(III). Ge(IV), Mn(II), Pd(II), 

Rh(III) and Pt(IV) have EC50 values within the concentration range between 1.3 x 10-4 M 

[Pt(IV)] and 9.9 x 10-4 M [Ge(IV)]. 

Modeling 

All-species Algae and P. subcapitata models (designated model A- and 

model PS) Fourteen SLRs and four MLRs were constructed with the metal 

characteristics and the -log EC50 values compiled for algae (without species distinction) 

exposed to the studied training metals. The best model (Model A12) was the SLR built 

with log m
2r as the predictor, yielding a r2

adj of 0.89 and a RSME of 0.722 (Table SI-12; 
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Figure 2A; Figure SI-1). Among the constructed MLRs, Model A16 had a very high r2
adj 

(0.93), a lower RMSE than Model A12 and a VIF under 10 (Table SI-13). However, 

testing model A16 with the TCEs demonstrated that their measured toxicities were poorly 

predicted, with Au(I), Ge(IV), Pd(IV), Pt(II), Re(VII) and Ru(IV) all falling outside the 

prediction interval bands (Figure SI-2). In contrast, the toxicity of the studied TCEs was 

reasonably well described with Model A12, except for Au(I), Au(III) and Pt(II), which lie 

outside the predicted error ranges (Figure 2B).  

SLRs and MLRs were also constructed with -log EC50 values restricted to those 

for P. subcapitata (data not shown). Log m
2r was again the best predictor of metal 

toxicity towards P. subcapitata (Model PS) with a higher r2 
adj of 0.94 and a lower RSME 

of 0.500 than the All-species model A12 (Figure SI-3A). The residuals were not normally 

distributed (p = 0.029) but they were not autocorrelated (DW = 1.864). Six of the TCEs 

fell reasonably close to the 1:1 predicted versus measured values line (Figure SI-3B). 

All-species daphnids, D. magna and C. dubia models (designated models D-, DM 

and CD) Among the tested metal characteristics, log m
2r was again the best predictor of 

the -log EC50 values (without species distinction) for daphnids exposed to the training 

metals, as indicated by model D12 (Table SI-14; Figure 3A; Figure SI-4). Among all the 

D models, its adjusted r2 value was the highest (0.86) and the RMSE was the lowest with 

a value of 0.77. The measured and predicted -log EC50 values for the training metals fell 

close to the 1:1 line (Figure 3B). This was also the case for the -log EC50 values of Pd(II) 

and Pt(IV). However, the predicted toxicities of the other TCEs were greater than what 

has been determined in laboratory toxicity tests, especially in the case of Au(I) for which 

there is a factor of about 103 between measured and predicted values. The best MLR 
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model was model D16, which used m and MP × z2/r to predict the daphnia EC50 values 

and yielded an adjusted r2 of 0.89 (Table SI-15). When measured TCE EC50 values were 

compared with those predicted using model D16, satisfactory results were found with 

three TCEs [Au(III), Pd(II) and Pt(II)] but unrealistic predicted EC50 values were 

calculated for Ir(III), Ge(IV), Pt(IV) and Ru(III) (Figure SI-5).  

Species-specific models were also constructed based on D. magna and C. dubia 

toxicity values (both SLRs and MLRs – data not shown). For both species, the best 

models were SLRs built with log m
2r as the predictor. Both models, i.e. Model DM for 

D. magna (Figure SI-6A) and Model CD for C. dubia (Figure SI7-A), had a high adjusted 

r2 of 0.86. The -log of the measured EC50 values of the TCEs fell within the prediction 

interval bands of model DM, but again with the exception of Au(I) (Figure SI6-B). No 

TCE toxicity data were available to test our model CD against measured values (Figure 

SI-7B, Table SI-9). 

All-species fish, O. mykiss and P. promelas models (designated models F-, 

OM and PP) The best SLR model to describe the toxicity of the training metals to fish, 

without species distinction, was model F12 (r2
adj of 0.89) with log m

2r as the input 

variable (Table SI-16; Figure 4A; Figure SI-8). However, plotting the measured metal 

toxicity values as a function of the model F12-predicted toxicity values showed that the 

predicted -log EC50 values of the TCEs matched poorly with the measured values (Figure 

4B). The MLR that best described the fish response to exposure to the training metals 

included χm and the interaction term MP × z2/r (Model F16, Table SI-17). Its adjusted r2 

was 0.89 with a RMSE of 0.664. However, comparison of measured and predicted -log 

EC50 values for the TCEs shows that the toxicity of the TCEs was not well predicted, 
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with unreasonably high predicted EC50 values (> 10 M) for Ge(IV), Pd(IV) and Pt(IV) 

(Figure SI-9).  

The simple regression models for O. mykiss were developed based on the -log 

EC50 values of Ag, Cd, Cu, Mn, Na, Ni, Pb and Zn as no values were available for Ca, 

Co, K or Mg (data not shown). The model OM using log m
2r as the entry variable was 

the best descriptor of the toxicity of the TCE toward O. mykiss with an adjusted r2 of 0.63 

and a RMSE of 1.334 (Figure SI-10A). The few TCEs for which toxicity values were 

available fell within the rather wide prediction interval bands of the model (Figure SI-

10B).  

The simple linear regression model for P. promelas was built with -log EC50 

values of the eleven training metals but without Ca, for which no data were available 

(data not shown). Among the studied metal characteristics, log m
2r was the best variable 

to describe the toxicity of the training metals (Figure SI-11A). The obtained model PP 

has an adjusted r2 of 0.87 and a RMSE of 0.661. Since no EC50 values were available for 

P. promelas exposed to the TCEs, the ability of the model to predict their toxicity could 

not be not tested (Figure S11-B).  

Discussion 

Quality of the toxicological database 

The quality of toxicological models such as those developed in the present work 

is intrinsically linked to the quality of the database used to construct them. Here, the 

toxicological database was based on acute toxicity data that complied with the pre-set 

conditions: (i) that the total dissolved metal concentrations had been measured, (ii) that 

the toxicological data were obtained, as much as possible, from several sources and (iii) 
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that the tested species were among those recommended by OECD and USEPA in their 

guidance documents for aquatic toxicity testing to predict EC50 values.  

In the algal toxicological database, copper had the highest number of available 

tests (62) with 38 performed with the recommended OECD and US EPA algal species P. 

subcapitata. In contrast, the Ni database (n=25) included a variety of algal species, 11 in 

total, the highest number among the algal databases. The least extensive databases were 

those for the major cations (Ca, K, Mg, Mn and Na). Although these elements have been 

studied over the years, they were rarely measured in the exposure medium (i.e., nominal 

concentrations or indirect estimates based on conductivity measurements were used – 

Santos et al. (2007), Venancio et al. (2017)) and thus many of the earlier studies were not 

useful for the present study. The daphnia database included many more tests than the 

algal database. The largest individual database was again for Cu with 239 data points and 

seven different daphnia species. The Ni database had the highest number of studied 

species (13 in total) whereas in contrast EC50 values for Co were only available for C. 

dubia. Although the database for the major cations was again the least extensive in terms 

of the number of experiments, one large data set was found in the literature, thanks 

especially to the work of Mount and colleagues who did extensive work on C. dubia 

(Mount et al. 2016). The Ag database contained only nine EC50 values but they came 

from eight different sources, suggesting good representativeness of the data. The 

toxicological data concerning fish are numerous for Cd, Cu, Ni, Pb and Zn, with a total of 

201 results for Cu with eight species represented. The US EPA (2016) report from which 

the Cd data were extracted provided responses for 25 different species, and a total of 100 

data points. In contrast, the Co database had only two available results for P. promelas 
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since three of the five EC50 values were reported as “higher than a certain value” and thus 

were not usable for the present study. Data for the major cations were again challenging 

to find in the literature, mostly because the total dissolved concentrations in the exposure 

media were again rarely measured.  

Statistical analyses of the EC50 values for each class of organism revealed that the 

incidence of outliers was linked to the use of additional species other than P. subcapitata 

for algae, such as C. reinhardtii and C. vulgaris for Cd, Chlorella sp. for Ni and C. 

kessleri for Pb, and additional fish species other than P. promelas and O. mykiss, such as 

Danio rerio, Lepomis macrochirus and Perca flavescens for Cd. In contrast, outliers in 

the daphnia database were not related to the use of particular species. Note that the 

outliers in the algal and fish databases were removed before the data were used in the 

QICAR modeling. 

There are far fewer EC50 values for the TCEs than for the training metals. In total, 

one or two algal EC50 values were available for each of the TCEs (n=12), with a 

maximum of five data points for Pd(II); P. subcapitata was again the most studied algal 

species. Ceriodaphnia dubia, D. magna and D. magna straus were the only daphnia 

species for which toxicological data were available for the TCEs, but the database did 

include 10 elements; Pd(II) and Pt(IV) had the highest number of data points (n=6) 

whereas only one test result was available for Au(I), Ir(III), Ge(IV) and Ru(III). Few 

EC50 values were available for fish exposed to TCEs since for several experiments, the 

results were reported as “higher than a certain value” and thus could not be used in the 

present study (Table SI-18). Nonetheless, seven elements were represented with one or 
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two EC50 values; O. mykiss was the most studied species but no P. promelas data were 

available.  

Best QICAR models 

Among the studied metal characteristics and based on the EC50 values for the 

training metals, the best predictor of the metal acute toxicity towards algae, daphnids and 

fish is the composite value m
2r or its log transformed value (Figures 2, 3 and 4). The m

 

term represents the electronegativity of the metal, e.g. its ability to attract electrons when 

it interacts with a ligand in solution or a membrane-bound metal transport site, whereas r 

is its ionic radius. Their combination as the composite m
2r parameter was introduced in 

the early 1980’s by Nieboer and Richardson in order to classify metals into three sub-

categories, i.e., class A, class B and borderline metals (Nieboer and Richardson 1980). 

This classification was carried out in the context of trying to understand and predict metal 

toxicity. At that time, Nieboer and Richardson demonstrated that “the index m
2r is an 

estimate of the quotient obtained by dividing the valence orbital energy by the ionic 

energy”. In other words, m
2r represents the importance of covalent interaction in metal-

ligand binding, relative to ionic interaction. For elements with low m
2r values (class A) 

such as Na (0.88) and Ca (1.00), the interaction with ligands is predominantly an ionic 

interaction between the cation and the donor atom(s) in the ligand, whereas metals with 

high m
2r values (class B) tend to form bonds with covalent character. This classification 

was completed with the use of z2/r, which describes “the ability of cations to form ionic 

bonds” and takes into account the charge on the cation and the ability of ions with small 

radii to approach ligands donor groups closely. Since publication of their landmark 1980 
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paper, m
2r has been a recurrent parameter used in QICAR models, either alone or in 

combination with z2/r or log KOH (Walker et al. 2013). 

In the present study, the best models used m
2r as the sole parameter to describe 

the toxicity of total dissolved metals to freshwater aquatic organisms, without the further 

need to add another characteristic or index such as z2/r. Moreover, this latter index 

showed very poor correlations with metal toxicity for all the studied organisms. Note that 

log KOH was not tested due to the lack of values for some data-poor elements.  

Quality of the QICARs prediction 

Very good correlations were found between m
2r and the toxicity of the training 

metals, with r2
adj values higher than 0.8 for all organisms except for O. mykiss (r2

adj = 

0.62) (Figure SI-10). However, predictions for the TCEs were not as good, in particular 

for Au (algae, daphnia, fish), Pd(II) (fish), Pt(II) (algae, daphnia) and for Rh and Ru 

(daphnia). Several factors may be contributing to the poorer predictive power of the 

models for these elements. First, the toxicity data for the TCEs were extracted from very 

few experimental tests, meaning that the EC50 values are not as robust as those for the 

training metals. Secondly, the m
2r values for the training metals that were used to 

construct the models ranged between 0.88 (Na) and 4.28 (Ag). As a consequence, for 

elements for which the m
2r values lie outside this range, such as Au(I) (7.89) and 

Au(III) (4.90), the model predictions necessarily involve an extrapolation, rather than an 

interpolation, and this may contribute to the poorer performance of the model. Note, 

however, that the m
2r values of Pd, Pt, Rh and Ru do fall within the range within which 

the models have been constructed. Thirdly, the toxicity testing of some TCEs were often 

performed with compounds having a chemical structure much more complex than those 
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of the training metals, which were usually added as dissociable chloride or nitrate salts, 

and this might have contributed to the deviations from the QICAR predictions. For 

example, Pt(II) was added as tetraammineplatinum hydrogen carbonate and 

tetrammineplatinum diacetate whereas Pt(IV) was added as dihydrogen 

hexahydroxoplatinate and platinum chloride. Similarly, Rh was added as diammonium 

sodium hexakis(nitrito-N) rhodate and as rhodium nitrate hydrate. In the present study, 

we have expressed the EC50 values as total dissolved metal concentrations, but to know to 

what extent these complex forms remain intact in the aqueous exposure media within the 

timeframe of the toxicity test would be very helpful. This is also true for the training 

metals, the speciation of which can vary as a function of pH, carbonate and DOM 

concentrations in exposure media. Given the central role of the free metal ion activity in 

the prediction of metal toxicity towards aquatic organisms (Campbell 1995), ongoing 

projects are now focusing on developing QICAR models based on the free metal ion 

activity to determine if this improves the prediction of TCE toxicities.  

CONCLUSION 

Eight ‘best’ models (r2
adj > 0.6) were constructed to predict acute EC50 values for 

twelve data-rich metals and ten data-poor TCEs, using toxicity testing data for 

freshwater algae, daphnids and fish (Table 1). All of these models used the covalent 

index, m
2r, in simple linear regressions, illustrating that a metal’s ability to form 

covalent bond is a good proxy for its toxicity.  

QICAR models show potential as a screening tool that could be used to review 

existing data and identify ‘outliers’, i.e. toxicity values that lie outside the QICAR 

prediction intervals. These outliers might be values that are abnormally low (and driving 
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regulation setting), or values that are unusually high; in both cases, the outliers might 

reflect inaccurate toxicity test results or inadequate predictive tools. The QICARs could 

be used to flag values that merit further scrutiny and possible retesting.  

In the case of TCEs, QICARs might also be used as an interpolation or 

extrapolation tool, to estimate their toxicity. Indeed, both parameters, m
 

(electronegativity) and r (ionic radius) forming the covalent index are easily retrieved 

from the basic Handbook of physics and chemistry (Rumble 2018). Improvement in 

QICAR predictions of TCE toxicity should include consideration of metal speciation in 

the exposure media (for both training and prediction sets of metals) and concurrent 

measurements of metal accumulation in the test species. Since metal-ion specific probes 

are generally not available for the TCEs, consideration of metal speciation will 

necessarily involve the use of chemical equilibrium models to calculate the major metal 

species present in the exposure media. Such models are inherently sensitive to the quality 

of the thermodynamic data that are available for the metal, and this may well be a 

limiting factor for some of the TCEs, which are data-poor not only in the case of toxicity 

data, but also with respect to their behavior in aqueous solution. Concurrent 

measurements of metal bioaccumulation, with a distinction between surface bound and 

internalized metal, would help establish links between metal speciation, metal 

accumulation and toxicity. The lack of such information currently hinders attempts to 

explain the mode of action of the TCEs. 

Supplemental Data—The Supplemental Data are available on the Wiley Online Library 

at DOI: 10.1002/etc.xxxx. 
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FIGURES 

 

Figure 1: Principal component analysis of the metal characteristics considered for testing 

in QICAR modeling, excluding IP, ∆IP, E0 and ∆E0. The dashed ellipses 

represent groups of strongly-correlated variables. 
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Figure 2: (A) Simple linear regression of the negative logarithm of the mean measured 

EC50 values of training metals (without algal species distinction), as a 

function of log χm
2r (-log EC50 predicted = 1.816 + 8.607 × log m

2r; r2
adj 

= 0.89). The dotted and black lines represent the 95% confidence interval 

and prediction interval bands, respectively. (B) Linear regression between 
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the -log EC50 predicted with the model presented in (A) and the negative 

logarithm of the mean measured EC50 values. The training metals are 

represented as single letters in black whereas for the TCEs, the individual 

EC50 values are presented as dots in several colors. The two gray lines 

indicate the 95% prediction interval bands.  
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Figure 3: (A) Simple linear regression of the negative logarithm of the mean measured 

EC50 values of training metals (without daphnid species distinction), as a 

function of log χm
2r (-log EC50 predicted = 1.912 + 8.154 × log m

2r; r2
adj 

= 0.86). The dotted and black lines represent the 95% confidence interval 

and prediction interval bands, respectively. (B) Linear regression between 

the -log EC50 predicted with the model presented in (A) and the negative 

logarithm of the mean measured EC50 values. The training metals are 

represented as single letters in black whereas for the TCEs, the individual 

EC50 values are presented as dots in several colors. The two gray lines 

indicate the 95% prediction interval bands. 
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Figure 4: (A) Simple linear regression of the negative logarithm of the mean measured 

EC50 values of training metals (without fish species distinction), as a 

function of log χm
2r (-log EC50 predicted = 1.578 + 7.979 × log m

2r; r2
adj 

= 0.89). The dotted and black lines represent the 95% confidence interval 

and prediction interval bands, respectively. (B) Linear regression between 

the -log EC50 predicted with the model presented in (A) and the negative 

logarithm of the mean measured EC50 values. The training metals are 

represented as single letters in black whereas for the TCEs, the individual 

EC50 values are presented as dots in several colors. The two gray lines 

indicate the 95% prediction interval bands. 

Table 1: Compilation of the best models to predict metal acute toxicity towards 

freshwater algae, daphnids and fish, with and without species-specificity 

(models based on total dissolved metal concentrations). 

 Model (-log EC50) r2
adj 

All algal species 1.816 + 8.607 × log χm
2r 0.89 

P. subcapitata 2.119 + 8.348 × log χm
2r 0.94 

All daphnia species 1.912 + 8.154 × log χm
2r 0.86 

D. magna 1.654 + 8.614 × log χm
2r 0.86 

C. dubia 1.953 + 8.808 × log χm
2r 0.86 

All fish species 1.578 + 7.979 × log χm
2r 0.89 

O. mykiss 1.776 + 8.387 × log χm
2r 0.62 

P. promelas 1.572 + 7.741 × log χm
2r 0.87 
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