N

N

. *2Q, DbK i bBKmH iQ iQ /2THQV 2M2 :v

K2i?Q/b BM KB+ Qb2 pB+2b # b2/ M2irC

>2°"MEM > «Hp "2x 0 H2 -J "+ . HK m- S?BHBTT2 _QQ
CQ;2G +Q2+22

hQ +Bi2 i?Bb p2 ' bBQM,

>2"MEM > eHp "2x 0 H2> - J "+ . HK m- S?BHBTT2 _QQb2- *? "BbiBM
._ *2Q, bK ibBKmH iQ iQ/2THQV2M2 ;vb pBM; K2i?Q/bBM KB+ Qb2
A*1- CmM kyky-" vQMM2-6" M+2X ? H@YjRRRRNN

> G A/, ? H@YJRRRRNN
2iiTbh,ff2 H@MMBp@T mX " +?Bp2b@Qmp2 i2bX7 f*
am#KBii2/ QM R8 C M kykR

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal-univ-pau.archives-ouvertes.fr/hal-03111199
https://hal.archives-ouvertes.fr

DRACeo0: A smart simulator to deploy energy
saving methods in microservices based networks

Hernan Humberto Alvarez ValeraMarc Dalmad, Philippe Roosg! Jorge Larracoechea ari€hristina Herzog
yz{ E2S UPPA, University of Pau
64600 Anglet / FRANCE
Email: hhavalera@univ-pau.f¥fMarc.Dalmau@iutbayonne.univ-pau fRhilippe.Roose @iutbayonne.univ-pau.fr,
{jorge-andres.larracoechea@etud.univ-patitferzog@ef cit.com
XEFFICIT SAS- Mauzac, France

Abstract—Nowadays, many researchers work to identify connections, allowing to deploy both types of approaches. It
microservices-based application deployments and scheduling so-deploys and operates (start, stop, move and duplicate) software
lutions to save energy without decreasing functional QoS. In this components from one device to another, regardless of whether
work, we present DRACeo: A simulator that allows facing this he device bel loud ” ' inals. Th
challenge in a simple and ef cient way, enabling its users to focus the eY'Ce e pngs to cloud entities or user t'ermlna S.) ?n’
uniguely on microservices deployment/scheduling algorithms and as Kalimucho is able to measure on each device CPU activity,
its hardware/software repercussions (load vs. energy consump- current bandwidth and RAM availability, it is a good middle-
tion) without worrying about low-level network con gurations or ware candidate for energy savings purposes. For this reason, in
operating system issues. DRACeo is able to deploy and schedule,some of our previous works [5] [6] we proposed a middleware

(move, duplicate, start/stop) microservices and their dependencies led “Kali " st Vi ired by Kali ho. Kali
on various devices with software and hardware heterogeneity ©2'/€0 “Kallgreen=strongly inspired by ralimucho. Kaligreen

(CPU, bandwidth, RAM, Battery, etc.), taking into account Proposes that each device in the network has a supervisory
various scheduling heuristics algorithms: centralized vs non- entity which: (1) constantly monitors the device energy situa-

centralized. To do this, DRACeo allows deploying custom network tion (i.e. battery, energy consumption, etc.) and the load of its
topologies based on client-server schemes or p2p distributions, hardware components; (2) classi es microservices according

where devices can (dis)appear, turn on/off obeying random - .
circumstances or user strategies. Finally, the simulator performs to their type and features [6] and (3) executes its own schedul-

relevant operations such as QoS de nition, resource monitoring, iNg algorithm based on smart negotiations [5]. Then, while we
calculation of energy saved and consumption tracking (at device did a POC to prove that moving/duplicating services in a dis-

and network level). We tested some ideas based on our previoustriputed architecture can save energy, we did not study enough
work "Kaligreen” to demonstrate the 'fffecnveness of DRACeO. e heterogeneity of devices or the capabilities that each
tio:{'dg;UTGJQVS\BW(',CL%?Ené'i(;f"pgig?yg\g’a;ﬁhuelgggy’ ConSUMP- K ardware compo_nent offers. Nor.did we ponsistently consider
the QoS of applications when microservices are scheduled at
different types and levels of network topologies. For these
reasons, we propose DRACeo: A tool that allows evaluating
Currently, many companies and scientists use microselifferent heuristics of microservice deployment/scheduling and
vices because they allow architectural advantages suchitasepercussions taking into account: (1) the capabilities and
acceleration of deployment cycles, modularity, improvemeptrticular characteristics of each hardware component, (2) the
of maintainability, high availability, scalability, etc [1]. Forsimple con guration, through a GUI or an API, of a centralized
example, Docker and Kubernetes [2] manage microservigge. client server), decentralized (i.e. p2p architectures [7]) or
on the cloud or even on grid environments, while Kalimuchbybrid network con guration and (3) the de nition and evalua-
[3] does the same on user device level. tion of QoS, energy metrics and quantity of operations quantity
Then, to manage them correctly and to achieve a desifgdovements, duplications, deployments and deletions) when a
QoS (i.e. performance and response time), it is necessarystheduling algorithm is executed. Thereby, DRACeo is able
face several issues such as, load balancing, scalability, étc.virtualize an environment controlled by any middleware
Some centralized approaches, such as the Netix Condubat deploys and schedules microservices, allowing researchers
tor [4] , help addressing them by managing microservice® create any type of scheduling algorithm and measure its
connection aspects; whereas decentralized approaches ¢ikesequences in terms of energy and application ef ciency.
Kalimucho [3], address these issues by allowing the devel-This article presents related works in section Il, the policies
opment of in-device algorithms for each node to perform méand the architecture of the simulator in Section Ill and nally,
croservices movement or duplication operations. Then, knoim-section IV, some examples and results are shown.
ing that both (and also hybrid) approaches have advantages
and disadvantages; we nd it useful to have a tool that allows
working with these two approaches. Kalimucho middleware In order to understand and formally express the set of
[3] enables each device to manage microservices and thmnsequences in terms of application efciency and energy

I. INTRODUCTION

Il. RELATED WORKS

consumption in any distributed environment, it is necessaand smartphones; however, users are also able to con gure
to have a tool that allows modeling multiple scenarios artteir own type of device. Each one of these has different
implementing various deployment and scheduling algorithmsomponents capabilities in terms of CPU frequency (presence
Packet oriented simulators [8] [9] [10] [11] [12], for examplepr absence of PCPG and DVFS are also included), RAM
allow to evaluate network trafc as well as the result okize, hard drive speed, network transfer rate and battery
using certain transmission protocols. They also allow modelirigptional), depending on which type they are or what cus-
scenarios to evaluate data streaming techniques and featui@®, con guration was performed. Each device is capable
latency, cases of data loss and data duplication and ewfnexecuting microservices, providing them a quantity of
modeling a specialized Information Centric Networking (ICNjesources according to their own needs and those of other
[13] architecture, among others. However, we consider thaampetitors microservices (like proportional share scheduling;
these tools cannot replicate the behavior (i.e. use of resourdesyever we are currently implementing other philosophies
application QoS and energy consumption) of a service-basasl round robin or a simplied version of CFS [20], which
architecture, where a higher level of abstraction is needetbes a red and black tree to organize processes). In addition,
On the other hand, services architecture based simulators [@4th device has a supervisor service running on it [5]. It
[15] [16] [17] [18] [19] enable performing a different setallows (1) tracking the status of each of its components in
of operations such as: services management, monitoring teems of load/capacity/energy consumption and (2) executing
exchange of information [18], adding virtualization policies distributed scheduling algorithm (i.e. move or duplicate a mi-
[14] and observing energy and QoS repercussions. They atsoservice to another known or reachable device, considering
provide other metrics such as: latency, requests [16], resouroegotiation criteria, load balancing, number of hops, etc.)

availability and power consumption. Then, even though these2) Microservice: Functional entity identi able by a unique

simulators are competent in analyzing services-based scenar-
) . . ID, which has a dened and precise function (i.e. a code
ios, we consider they do not offer a simple and transparent w, . .

t represents a function and that allows to be duplicated

for deploying high-level distributed/centralized scheduling aj- the simulator as explained in the next section III-B). When

gorithms among heterogeneous devices belonging to differef(t :
o : . deployed on a device, the microservice claims for a certain
network topologies in which, for example, the relation betweeli

energy consumption analysis and a de ned QoS is importad ount of resources in terms of CPU, network, RAM and disk.
For all these reasons, DRACeo is strongly focused on tEIeI?QACeo supports by default 3 types of microservices: graphi-

o . o . cal user interface microservices, calculation microservices and
application of both centralized and distributed scheduling algg- . ; .
: . -2 7 ~fata management microservices. The only differences between
rithms, allowing to analyze at deployment/execution time: (

the de nition, measurement and modelization of application em are their default resources consumption, the amount of
Q0S, (2) thé load of each node's hardware com %elents acf]‘z%jta they send/receive, their size and the restriction of being
' . . mp moved or not from one device to another. For example, a Ul
(3) the energy consumption of a particular device as well Microservice may not be moved (since the user experience
of the entire modeled network. Furthermore, DRACeo allows .) . i .
. ;) would be affected); while a computing microservice may
microservices orchestration and choreography by recon 9yrs duplicated or moved to another nearby device. A data
ing microservice's connections and hosting devices.)

management microservice can be moved, but may have a
I1l. DRACEO SIMULATOR strong impact on bandwidth consumption. As with devices,
user has the ability to create its own type of microservices.

-

DRACeo is a desktop and portable simulator, able t%
manage (deploy/schedule) any microservice based applicatio) Connection:DRACeo de nes and manages two kinds of
in any network architecture (non-centralized, centralized acdnnections: physical connections that exist between devices
hybrid). Then, in our simulator context, an application iand logical/functional connections between microservices. A
de ned as a directed graph whose nodes are microservig#g/sical connection logically supports many microservices
and edges the connections between them. Furthermore, exammgnections and enables to track the current and maximum
application is deployed on a graph of connected devices, whe@ssible transfer rate (i.e. between 2 devices: the maximum
the nodes could be devices with heterogeneous characteridiaasmission capacity of the device with the network interface
or abstract entities such as clusters or cloudlets. Device grapith less transmission capacity). Then, this allows understand-
edges are the network connections that exist between eault (1) the general state (i.e. at energy and load level) of a
node (ethernet, wireless, 4g, or bluetooth), which allow to ndiven device network interface, even if it belongs to abstract
the transfer rate at which the microservices can send or recedvaities such as clusters, cloudlets, etc. and (2) the set of
data to each other. Then, to understand the interaction of batfcroservice connections status (i.e. expected transmission
graphs, it is necessary to describe their nodes and edgesaite vs. real) that use a physical connection. Furthermore,

detail, which are the entities of our simulator: connections between microservices logically store the set of
] - physical connections they use to communicate. That is, it is
A. Simulator entities possible to know, through the supervisor microservice, the path

1) Device: Processing entity identi able by a unique ID.of devices a microservice connection uses to work, as well as
The simulator by default supports desktop computers, laptape current and expected transfer rate.

4) Application: A directed graph of microservices identi - center or from a speci ¢ device, which knows its connected
able by an ID. Each microservice (node) can have connectiqreers and is able to execute decentralized algorithms.
(edges) as dependencies relations with several other microsei#’/hen a microservice is moved, rstly it releases the re-
vices which run on different devices on the network. sources of its current device. Then, DRACeo simulates the

5) Operations center:Centralized entity which stores allmoving process by using the involved network connection
references to connections and existing devices of a deployeti a period of time based on the microservice size. Finally,
scenario. In this way, any type of middleware can be con gt starts to compete for the resources of the new device. If
ured and any centralized scheduling algorithm can be appli@microservice is moved and becomes unreachable for one

6) Abstract entities:Resources providers such as cloudle@f its dependencies, the user will be able to specify search
and clusters. Both can be deployed and connected in the sdrgrehanisms for a duplicate instance or establish special search
way as devices, establishing the amount of resources to of@d path optimization mechanisms to solve the problem.
and manage. Therefore, our simulator is compatible with both,6) Microservices duplication:DRACeo knows each mi-

small networks of user devices and cloud networking. croservice's function. Thus, it is also capable of duplicating
microservices when, for example, the scheduling algorithm
B. Simulator Operations decides that a microservice is very requested and its overload

]) o produces excessive energy consumption. Thus, a user or an
DRACeo is able to apply different types of heuristics for Migiqorithm can specify where to duplicate this microservice:

croservices (re)deployment and scheduling through a netwogk) on, the same device as the original microservice, or (2) on
For this, the following operations have been implemented: 5other connected or reachable device.

1) Device deployments previously mentioned, a user can 7) Microservices and devices Start/StopRACeo allows
deploy/declare default DRACeo devices (i.e. desktop comr a scheduled or manual way to (re)start/stop devices or mi-
puter, laptop and smartphone); however, he can also depigservices. Both also operate as deployment and suppression
"custom” devices, specifying their capabilities in terms of (13f devices and microservices. The only difference is that both
CPU frequency in Ghz, (2)RAM capacity in MB, (3) networkelements do not disappear permanently. This allows generating
capacity in Mbl/s, (4) hard drive in MB/s and (5) battery speckcenarios based on energy saving techniques such as putting
cation. Furthermore, each time a device is deployed, the us@fo sleep mode unused devices [21].
must specify an x, y position on a Cartesian plane of metric8) QoS de nition: DRACeo allows de ning any QoS
units. This possibility allows studying deployment techniquéseuristics, either at microservice or application level. How-
based on distance heuristics or techniques to improve routeger, the simulator offers two default heuristics: (1) “non-

2) Device suppressionDRACeo allows the suppression ofdependent” and (2) "dependent” approach. For the rst one,
devices (1) Manually, by the user's decision and (2) automddRACeo, calculates the QoS value of the microservices in
ically, according to the deployed scenario. A user can activgieoportion to the hardware resources needed-obtained; while
a "disappear” option for each device, causing the simulator tilee QoS of the application is also obtained proportionally to
delete the device after a random, established or battery relatieel QoS of each microservice that composes it. Thereby:

time; simulating unexpected connection loss. For a microserviceM being executed in a devicB,
3) Microservice deploymentDRACeo allows simulating a DRACeo user can de ne the ideal quality of (service

the execution of microservices on devices. This means that Qo0S=100%) by specifying: (1)the resources thtre-
once deployed, a microservice uses a quantity of resources quires to run in terms of CPU frequency in GHz, RAM
for a determined time or inde nitely [6]. This time can be set consumption in MB, network transfer rate in MB/s and
by: (1) the DRACeo Ul or (2) automatically by an operation hard disk transfer rate in MB/s and (2) an impact value
center function. Furthermore, the user must also specify the that each of these needs has. These last value must be
microservice size in terms of disk usage and serialization (i.e. considered from 0-1 and its sum must be 1.
the amount of data that would be sent over the network if the Then, there might be some differences between the re-
microservice is moved or duplicated). This attribute allows sourcesV required to run and what it gets frobh. Those
analyzing the cost of operations in terms of efciency and differences are expressed in percentage (from 0-100) for
energy. For example, a user can con gure the deployment of each difference: (1pc CPU frequency, ()r for RAM,
a microservice (setting up resources consumption: CPU (ghz), (3)Dy for network transfer rate and (fy for hard disk
RAM (MB), network (MB/s), HDD (MB/s) and size(MB)) to transfer rate. Thus, a microservice QoS is de ned by:
start running after X minute after simulation start. ¥4

4) Microservices suppressionSimilar to deployment, a QoSw = 11Dc +12Dr + 13Dy + 14Dy where __0 =1 @
microservice can be terminated/killed by using a simulator Ul . . — L
button, or according to a de ned amount of time (also set usinH Similarly, the QoS of an gppl|cat|9rQoSapp is de ned by
the Ul). The microservice will simply stop using the device! e QoS of each_ of thél micraserviceQoS; that compose
resources and will no longer be available for any item. It, based on the impact valug that the user de nes.

5) Microservices migration:.DRACeo can move microser-

X
vices between devices. This can be done from the operations QoSi I where i =1 @

i=0 i=0

On the other hand, DRACeo also offers a "dependent” L. L UL
heuristic, in which theQoS of a microserviceM is limited E= Wy —— + W; —4&X -t
. Lo L max L max L

by the least satis ed demanded resource, taking into account
the impact parameter | speci ed by the user:

QoSy =Min (IcDc;lrDRr;INDN;IHDH) (3)

(6)

Note that to nd the component's power consumption,
instead of for a microservicd,; = L
11) Energy consumption analysidDRACeo also allows
Then, theQoS of an applicatiolPAP P composed by a set of measuring the energy consumption in a time range. This
microserviceM =[Mg:::M,] is limited by the microservice analysis can be done for each device or for the entire scenario

M; 2 M with the lowestQoS value: (all devices). Operations such as graphical PLOT, data storage
and linear/polynomial regression are supported.
QoSppp = Min (QoSy,;)8M; 2 M 4 12) Centralized/non-centralized scheduling algorithm

9) QoS analysis:Our simulator can evaluate the QoS O?tart/_Stop: . When _DRACeQ executes. a scheduling
apolications and microservices at a speci ¢ rate de ned balgorlthm, it automatically displays metrics necessary for
PP P qerformance analysis: (1) Run time, (2) number of operations

the user when a scheduling algorithm is being executed. . .
. . erformed, (3) data transmitted by movements/duplications
Operations such as graphical PLOT, data storage and lin- .

) ' on device or across the network, (4) energy used for
ear/polynomial regression are supported.

. . movements/duplications on device or across the network and
10) Energy consumption parameters de nitionFor

o (5) load per device and global load.
DRACeo0, power consumption is based on the usage level 01)13) Save/Load:Deployments and execution stages.

each component of each device. Then, the user can specify
the formula of his choice for each device to relate the CPU IV. RESULTS
frequency used, and the current transfer rates of the hard diskn order to test the effectiveness of DRACeo, we im-

and the network (RAM consumption is independent of itslemented two “naive” approaches (centralized and non-
load), with the power consumption expressed in Watts. Thigntralized) for energy savings. The objective here, is to vali-
dynamism allows the user to display specic parameters ghte that we can deploy any type of energy saving scheduling

each component model, normally speci ed in the datasheefpproach and then, perform its analysis in terms of QoS.
However, by default, DRACeo speci es the following models,

both to measure the energy of devices and microservices: A+ APproach 1 : Decentralized

CPU energy measurement: CPU [22] power consumption
can be understood in terms of its capacita@gevoltage
V and frequency.

P = CV?F (5)

0.00|25.00

Then, the user must specify, V andF to measure the 20:00125,00
current CPU energy consumption. Note that to measure :
the CPU consumption of a microservité, F must be 0.00/25.00
equal toM % frequency, assuming tha#l is the only
current process in the device.

NIC and HDD energy measurement: From several works
which study energy consumption [23] [24] [25] [26]
[27] [28] [29], we have observed that: (1) there is a Fig. 1. Sample decentralized-mixed network

direct relation between the transfer rates and energyThe network of gure 1, is managed by DRACeo according
consumption and (2) both HDDs and NICs have differeid equations described in section 1lI-B for energy manage-
consumption rates when they send/receive data and whmant/evaluation and for QoS calculation. We deployed 5
they are in idle state. For this reason, we have modeled ttennected devices with capacities shown in the outline of each
energy consumptiofe of both components in the sameone in terms of used/available network (left: MB/s), RAM(top:
way. We established\&/, and aW; value for each device MB), CPU(right: Ghz) and hard drive rate(down:MB/s). Ini-
which represent the consumption in watts when its NI@ally (Top right of gure 1) D_5 is running an application

or HDD is in active state and the consumption in wattsomposed of 4 differents (i.e. GUI and “control” CPU inten-
when it is in idle state, respectively. For a microsente sive for this example) microservices which have requirements
with a transfer raté;, Wy, will multiply L; relative to the in terms of [CPU-Ghz,RAM-MB,network-MB/s,HDD-MB/s,
maximum transfer rate capacityax . Then, this result size-MB]: (1) GUI: MS 1 [1.2,200,0,0.1,50], (2)Control M

will be added to the idle state consumption. For thig, [1.8,100,0,50,50], (3)Control MS [0.8,150,0,50,50], (4)Con-
will multiply the complement of the current componentrol MS_4 [1.8,100,0,50,50]. Then, every 1 to 5 seconds each
loadL (i.e.Lmax L) relative toLyax . We consider supervisor checks energy consumption of its device against an
that the idle state tha¥l generates in the component, isarbitrarily threshold. If exceeded, the device will try to move
proportional in the same way that is for L. the heaviest microservice to the freest neighbor.

At runtime, since this approach has no end and is quitewith requirements in terms of [CPU-Ghz,RAM-MB,
naive, it makes the microservices M5 MS 3 and MS4 network-MB/s, HDD-MB/s, size]: GUI MS1 [1.2, 200,
oscillate between devices D, D_2, D_3 and D 4. However 0,0.1, 50], Control: MS2 [1.8,100,0,0.1,50], Control: MS
DRACeo is able to store the best iteration. It found that tt{8.8,150,0,100,50] and Control: M8 [1.8,100,0,0.1,50].
best deployment is the one represented in gure 1, where
the microservices that saturated the CPU of the smartphone
D_5 are running now on the laptop_ and the PC D2.
Moreover in gure 2, we note an initial low power con-
sumption since only D6 resources are used. Then, it has
increased considerably, because now the network cards of
D_1, D 2 and D5 are saturated and the Dand D 2 CPU,
RAM and transfer rate have increased their load as well (note
that: (1)microservices now use the network to communicate
to each other and (2) in this particular case, since no direct
connections between B and D1 exist, microservices 1
and 2 use D2 as a connection path, saturating its network
card). The prototype interprets this deployment as an ideal
one, because it obtains highest QoS (i.e. 100 %) and lowest
possible consumption (i.e. 97,8 watts). Furthermore, to obtain
this solution, DRACeo ran the algorithm for 43.8 seconds, _ _ _

. . . . Fig. 3. Sample mixed-centralized network
performing 148 microservices movements between all devices,

which means 7400MB transmitted and 0.0036 kWh consume .At runtlmg, D tries to move the heaviest microservice 0
the node with least load (except M5 because it manages

DRACeo - Global Energy Consumption DRACeo - Global APPS QoS a GUI process). Similar to the DYEViOUS example, it makes

Loro i il | the microservices M, MS_3 and MS 4 oscillate between

i % the other peers. However, unlike the previous algorithm, this

Lot % algorithm nds a solution and stabilizes in a single deployment

1020 s shown in gure 3, where the microservices that saturated

s 52 the resources of 2 are running now on D4 and D 3.

o O] s | In addition, in gure 4, we can see that the overall power

s70 s consumption at the beginning was low since only the resources
40 45 55 38 40 42 44 46 48 50 52 54 of device D 2 are used. Then, it has increased because now,

Time Time
energy/time tirr

the resources of B and D 4 are being used.

Fig. 2. Results of non-centralized algorithm evaluation

DRACeo is also capable of showing metrics for each device.
For instance, D4 was the device least involved in the exe-
cution of the algorithm, performing only 16 operations which
means 800MB transmitted and an energy use of 0.000016kWh.

We can conclude for example that, if we apply naive
distributed scheduling algorithms like this, we can get some
interesting deployment proposals in which there is an inverse
relation between QoS and energy consumption. However, it
lacks ef ciency and predictability in terms of the amount of
time and resources invested to reach a solution.

B. Approach 2 : Centralized Fig. 4. Results of centralized algorithm evaluation

The network of gure 3 has the same settings as the previousThe simulator interprets that this is the best deployment
example for energy management/evaluation, QoS calculatisince it obtains the highest QoS (i.e. 100 %) and the lowest
and resource view. In this second approach, a single devjmessible energy use (159,8 watts). Furthermore, to obtain this
(in fact, a server) executes the scheduling algorithm. Everysblution, DRACeo ran the algorithm for 64.3 seconds, per-
seconds, it monitors the load of the rest of devices and ched&sming 70 microservices movements, which means 3500MB
that they do not exceed an arbitrary threshold. If this happemsnsmitted and an energy use of 0,00018207kWh.
it will try to move the most expensive microservice from the It is interesting to see that both approaches, which managed
affected device to the freest one. Initially, (bottom left of guresimilar applications, have different advantages and disadvan-
3) D_2 is running an application composed of 4 microservicaages. For example, the rst one reaches a solution 20.5

seconds before the second one; but the second one perforisH. H. lvarez Valera, M. Dalmau, P. Roose, and C. Herzog, “The archi-

fewer operations, which means 3900 MB in operations trans-
missions and; 00341798W h saved. On the other hand, the
rst one is more unstable than the second (which is lineaf7]
from the second 64); but it offers more variety of deploymen
options by time interval. These two observations, for example, 8]
allow us to understand some characteristics of centrallze[d]
and decentralized distributed approaches like those, Whﬂ%@
either with a greater number of nodes and microservices,
former will offer more stable computational behavior and g1]
controlled number of operations; while the latter will offer[12]
greater diversity of solutions in less time.

As we see, DRACeo can deploy both approaches (or more
complex ones [7]), allowing the analysis of several variablés3]
that describe the de ned QoS, whole or per device energy
consumption, whole or per device amount of data transmitted
and the time to get interesting results. (14]

V. CONCLUSIONS AND FUTUREWORKS [15]

In this work, we have presented our simulator called
DRACeo. It is capable of deploying and managing any type
of network and heterogeneous devices to run distributed)
applications based on services or microservices. DRACeo
implements functions of (un)deploying dynamically devices
and deploying, deleting, moving and duplicating microservicgsy
to allow performing centralized and non-centralized planning
algorithms. At run time, the simulator is capable of monitoring
several variables that allow understanding the ef ciency of theg)
technique deployed: Execution time, amount of energy spent,
current quality of service and amount of data transmitted
some good examples. It is important to say that in order to nd
the value of QoS and energy consumption, the simulator allows
users (defaults approaches are provided) to de ne their o
heuristics or formulas. The objective of DRACeo is to allow
testing dynamic deployment scheduling algorithms that r&1]
deploy microservices in order to save energy while conserving
a certain QoS. Thereby, DRACeo will help developers and
researchers nd the best deployment and best distributif?]
behavior in any network of heterogeneous devices. 23]

Actually, we are improving the scalability of DRACeo,
taking into account discrete and deterministic approaches as
well as real deployments of microservices and devices.
the other hand, we are updating the heuristics to determine
the power consumption in some hardware components with
special features(CPU turbo boost, DVFS, etc). 2

REFERENCES

[1] A. W. Services, “Implementing microservices on aws,” vol. 2019, 2019,

[2] DOCKER, “Debug your app, not your environment,” (26]
https://www.docker.com/, 2020.

[3] K. Da, M. Dalmau, and P. Roose, “Kalimucho: Middleware for mobile
applications,” inProceedings of the 29th Annual ACM Symposium okf7]
Applied Computingser. SAC '14, 2014.

[4] NETFLIX, “Netix conductor: A microservices orchestrator,” (28]
https://net ixtechblog.com/net ix-conductor-a-microservices-
orchestrator-2e8d4771bf40, 2016.

[5] H. H. Ilvarez Valera, P. Roose, M. Dalmau, C. Herzog, and K. Resdzg]

cio, “Kaligreen: A distributed scheduler for energy savinByocedia
Computer Scien¢e2018.

] 1BM,

tecture of kaligreen v2: A middleware aware of hardware opportunities
to save energy,” irR019 Sixth International Conference on Internet of
Things: Systems, Management and Security (IOTSRIH).

E. Bongers and J. Pouwelse, “A survey of p2p multidimensional indexing
structures,” 2015.

packetstorm, “Network simulation,”
simulation/, 2018.

G. C. Inc., “Ip wan emulator,” https://www.gl.com/wan-link-emulation-
ipnetsim.html, 2020.

CISCO, “Cisco packet tracer,” https://www.netacad.com/courses/packet-
tracer, 2020.

Greencloud, “Greencloud - the
https://greencloud.gforge.uni.lu/, 2017.
S. Sundresh, Wooyoung Kim, and G. Agha, “Sens: a sensor, environment
and network simulator,” irB7th Annual Simulation Symposium, 2004.
Proceedings.2004, pp. 221-228.

S. Agrawal, S. Shailendra, B. Panigrahi, H. K. Rath, and A. Simha, “O-
icn simulator (oicnsim): An ns-3 based simulator for overlay information
centric networking (o-icn),” inProceedings of the 1st Workshop on
Complex Networked Systems for Smart Infrastructled.8.
cloudbus, “Containercloudsim: An environment for
and simulation of containers in cloud data
http://www.cloudbus.org/cloudsim/container.html, 2016.

Z. Nikdel, B. Gao, and S. W. Neville, “Dockersim: Full-stack simulation

of container-based software-as-a-service (saas) cloud deployments and
environments,” in2017 IEEE Paci ¢ Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIRO17.

Y. Zhang, Y. Gan, and C. Delimitrou, “pgsim: Enabling accurate and
scalable simulation for interactive microservicel2EE International
Symposium on Performance Analysis of Systems and Software (ISPASS)
2019.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management technigues
in the internet of things, edge and fog computing environments,”
Software: Practice and Experienc2017.

P. Novotny and A. Wolf, “Simulating services-based systems hosted in
networks with dynamic topology,” 2016.

https://packetstorm.com/network-

green cloud simulator,’

modeling
centers,”

] A. D. M. D. Esposte, E. F. Santana, L. Kanashiro, F. M. Costa,

K. R. Braghetto, N. Lago, and F. Kon, “Design and evaluation of
a scalable smart city software platform with large-scale simulations,”
Future Generation Computer Syster2919.

“Inside the linux 2.6 completely fair scheduler,
https://developer.ibm.com/technologies/linux/tutorials/I-completely-
fair-scheduler/, 2018.

N. M. Azmy, |. A. EI-Maddah, and H. K. Mohamed, “Adaptive power
panel of cloud computing controlling cloud power consumption,” in
Proceedings of the 2Nd Africa and Middle East Conference on Software
Engineering 2016.

Intel, “Enhanced intel speedstep technology for the intel pentium m
processor,” 2004.

S. Kiertscher and B. Schnor, “Scalability evaluation of an energy-
aware resource management system for clusters of web servers,” in
Proceedings of the International Symposium on Performance Evaluation
of Computer and Telecommunication Systeses. Spects '15, 2015.

K. Zhan, C.-H. Lung, and P. Srivastava, “A green analysis of mobile
cloud computing applications,” iRroceedings of the 29th Annual ACM
Symposium on Applied Computjriz014.

5] A. Orgerie, L. Letvre, |. Gérin-Lassous, and D. M. Lopez Pacheco,

“Ecofen: An end-to-end energy cost model and simulator for evaluating
power consumption in large-scale networks,” lBEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
2011.

B. F. Cornea, A. Orgerie, and L. Leefre, “Studying the energy consump-
tion of data transfers in clouds: the ecofen approach20f4 IEEE 3rd
International Conference on Cloud Networking (CloudiNef14.

S. Chiaravalloti, F. Idzikowski, and L. Budzisz, “Power consumption of
wlan network elements,” 2011.

Segate, “Desktop hdd product manual,” https://www.seagate.com/www-
content/product-content/barracuda-fam/desktop-hdd/barracuda-7200-
14/en-us/docs/100686584v.pdf, sep 2016.

Samsung, “Samsung v-nand ssd 860 evo,” dec 2017.

