R. Temam, On the Euler equations of incompressible perfect fluids, Journal of Functional Analysis, vol.20, issue.1, pp.32-43, 1975.

T. J. Barth, Numerical Methods for Gasdynamic Systems on Unstructured Meshes, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, vol.5, pp.195-285, 1999.

S. W. Bova and G. F. Carey, AN ENTROPY VARIABLE FORMULATION AND APPLICATIONS FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS, International Journal for Numerical Methods in Fluids, vol.23, issue.1, pp.29-46, 1996.

G. Hauke and T. J. Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.153, issue.1-2, pp.1-44, 1998.

L. Pesch and J. J. Van-der-vegt, A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids, Journal of Computational Physics, vol.227, issue.11, pp.5426-5446, 2008.

A. R. Winters and G. J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, Journal of Computational Physics, vol.304, pp.72-108, 2016.

S. D. Kim, B. J. Lee, H. J. Lee, and I. Jeung, Robust HLLC Riemann solver with weighted average flux scheme for strong shock, Journal of Computational Physics, vol.228, issue.20, pp.7634-7642, 2009.

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.

A. Fluent, Fluid-Structure Interaction with Ansys/Fluent, Fluid-Structure Interactions and Uncertainties, vol.14, pp.35-57, 2017.

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & Fluids, vol.28, issue.1, pp.63-86, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00871725

H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes, Computers & Fluids, vol.33, issue.4, pp.655-675, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00072433

P. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, Journal de Mathématiques Pures et Appliquées, vol.77, issue.6, pp.585-627, 1998.

H. Hoteit, P. H. Ackerer, R. Mosé, J. Erhel, and B. Philippe, New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes, International Journal for Numerical Methods in Engineering, vol.61, issue.14, pp.2566-2593, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00072097

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Communications in Mathematical Physics, vol.104, issue.1, pp.49-75, 1986.

C. F. Kennel, R. D. Blandford, and P. Coppi, MHD intermediate shock discontinuities. Part 1. Rankine?Hugoniot conditions, Journal of Plasma Physics, vol.42, issue.2, pp.299-319, 1989.

L. Corrias, Fast Legendre?Fenchel Transform and Applications to Hamilton?Jacobi Equations and Conservation Laws, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1534-1558, 1996.

M. Mock, Systems of conservation laws of mixed type, Journal of Differential Equations, vol.37, issue.1, pp.70-88, 1980.

S. K. Godunov, An interesting class of quasilinear systems, Sov.Math.Dokl, vol.2, pp.947-949, 1961.

S. K. Godunov, THE PROBLEM OF A GENERALIZED SOLUTION IN THE THEORY OF QUASILINEAR EQUATIONS AND IN GAS DYNAMICS, Russian Mathematical Surveys, vol.17, issue.3, pp.145-156, 1962.

C. A. Fletcher, A primitive variable finite element formulation for inviscid, compressible flow, Journal of Computational Physics, vol.33, issue.3, pp.301-312, 1979.

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, vol.12, pp.451-512, 2003.

B. S. Massey, Units, Dimensionnal Analysis and Physical, 1971.

J. Kok, An industrially applicable solver for compressible, turbulent flows, 1998.

T. J. Barth, Numerical Methods for Gasdynamic Systems on Unstructured Meshes, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp.195-285, 1999.

T. J. Barth, Simplified Discontinuous Galerkin Methods for Systems of Conservation Laws with Convex Extension, Lecture Notes in Computational Science and Engineering, pp.63-75, 2000.

E. Schall and N. Chauchat, Implicit method and slope limiter in AHMR procedure for high order discontinuous Galerkin methods for compressible flows, Communications in Nonlinear Science and Numerical Simulation, vol.72, pp.371-391, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02132409

S. Candel, Les equations de la Mecanique des fluides newtoniens, Lecture Notes in Physics, pp.1-27