X. Ma, J. Geiser-lee, Y. Deng, and A. Kolmakov, Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation, Sci. Total Environ, vol.408, pp.3053-3061, 2010.

M. R. Khan, V. Adam, T. F. Rizvi, B. Zhang, F. Ahamad et al., Nanoparticle-Plant interactions: Two-way traffic, Small, 2019.

M. Shrivastava, A. Srivastav, S. Gandhi, S. Rao, A. Roychoudhury et al., Monitoring of engineered nanoparticles in soil-plant system: A review, Environ. Nanotechnol. Monit. Manag, vol.11, 2019.

J. Lv, P. Christie, and S. Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges, Environ. Sci. Nano, vol.6, pp.41-59, 2019.

L. Torrent, M. Iglesias, E. Marguí, M. Hidalgo, D. Verdaguer et al., Vogel-miku?, K. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration, J. Hazard. Mater, vol.384, 2020.

K. L. Hayes, J. Mui, B. Song, E. Shirzaei, S. W. Eisenman et al., Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions, Sci. Total Environ, vol.719, 2020.

H. Ullah, X. Li, L. Peng, Y. Cai, and H. W. Mielke, In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants, Sci. Total Environ, vol.737, 2020.

N. Al-amri, H. Tombuloglu, Y. Slimani, and S. Akhtar, Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.), Ecotoxicol. Environ. Saf, 2020.

H. Tombuloglu, Y. Slimani, G. Tombuloglu, and M. Almessiere, Uptake and translocation of magnetite (Fe 3 O 4 ) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.), Chemosphere, vol.226, pp.110-122, 2019.

J. Hu, X. Wu, F. Wu, W. Chen, J. C. White et al.,

, J. Hazard. Mater, vol.2020, 121837.

J. A. Ko and Y. S. Hwang, Effects of nanoTiO 2 on tomato plants under different irradiances, Environ. Pollut, 2019.

J. Wojcieszek, J. Jimenez-lamana, L. Ruzik, M. Asztemborska, M. Jarosz et al., Characterization of TiO 2 NPs in radish (Raphanus sativus L.) by Single Particle ICP-QQQ-MS, Front. Environ. Sci, vol.2020, p.100
URL : https://hal.archives-ouvertes.fr/hal-02921579

Y. Li, N. Zhu, X. Liang, L. Zheng, C. Zhang et al., A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system, Ecotoxicol. Environ. Saf, vol.189, 2020.

D. Bao, G. O. Zheng, and Z. Chen, Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front, Plant Sci, vol.7, pp.1-8, 2016.

C. Cocozza, A. Perone, C. Giordano, M. C. Salvatici, S. Pignattelli et al., Silver nanoparticles enter the tree stem faster through leaves than through roots, Tree Physiol, vol.39, pp.1251-1261, 2019.

I. R. Souza, L. R. Silva, L. S. Fernandes, L. D. Salgado, H. C. Silva et al., Visible-light reduced silver nanoparticles' toxicity in Allium cepa test, Environ. Pollut, 2020.

G. Song, W. Hou, Y. Gao, Y. Wang, L. Lin et al., Effects of CuO nanoparticles on Lemna minor, Bot. Stud, vol.57, pp.1-8, 2016.

H. Owji, S. Hemmati, R. Heidari, and M. Hakimzadeh, Effect of alumina ( Al 2 O 3 ) nanoparticles and macroparticles on Trigonella foenum-Graceum L. In vitro cultures: Assessment of growth parameters and oxidative stress-Related responses, vol.9, pp.1-12, 2019.

Y. Ding, X. Bai, Z. Ye, L. Ma, and L. Liang, Toxicological responses of Fe 3 O 4 nanoparticles on Eichhornia crassipes and associated plant transportation, Sci. Total Environ, vol.671, pp.558-567, 2019.

S. Cristina, C. Arruda, A. Luiz, D. Silva, R. Moretto et al., Nanoparticles applied to plant science: A review, Talanta, vol.131, pp.693-705, 2015.

J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, Silver nanoparticles: Behaviour and effects in the aquatic environment, Environ. Int, vol.37, pp.517-531, 2011.

H. A. Castillo-michel, C. Larue, A. E. Pradas, M. Cotte, and G. Sarret, Practical review on the use of synchrotron based micro-and nano-X-ray fl uorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials, Plant Physiol. Biochem, vol.110, pp.13-32, 2017.

C. Larue, H. Castillo-michel, R. J. Stein, B. Fayard, E. Pouyet et al., Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant, Spectrochim. Acta Part B At. Spectrosc, vol.119, pp.17-24, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02325166

A. D. Servin, H. Castillo-michel, J. A. Hernandez-viezcas, B. C. Diaz, J. R. Peralta-videa et al., Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO 2 nanoparticles in cucumber (Cucumis sativus) plants, Environ. Sci. Technol, vol.46, pp.7637-7643, 2012.

L. Yin, Y. Cheng, B. Espinasse, B. P. Colman, M. Au et al., More than the ions: The effects of silver nanoparticles on Lolium multiflorum, Environ. Sci. Technol, vol.45, pp.2360-2367, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01426201

J. A. Hernandez-viezcas, H. Castillo-michel, A. D. Servin, J. R. Peralta-videa, and J. L. Gardea-torresdey, Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles, Chem. Eng. J, vol.170, pp.346-352, 2011.

J. A. Hernandez-viezcas, H. Castillo-michel, J. C. Andrews, M. Cotte, C. Rico et al., In situ synchrotron X-ray fluorescence mapping and speciation of CeO 2 and ZnO nanoparticles in soil cultivated soybean (Glycine max), ACS Nano, vol.7, pp.1415-1423, 2013.

F. Laborda, E. Bolea, and J. Jiménez-lamana, Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples, Trends Environ. Anal. Chem, vol.9, pp.15-23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01500058

F. Laborda, E. Bolea, and J. Jiménez-lamana, Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis, Anal. Chem, vol.86, pp.2270-2278, 2014.

T. Murashige and F. Skoog, A Revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant, vol.15, pp.473-497, 1962.

D. R. Hoagland and D. I. Arnon, The water-culture method for growing plants without soil, Calif. Agric. Exp. Stn. Circ, vol.347, p.32, 1949.

J. Nath, I. Dror, P. Landa, K. Motkova, T. Vanek et al., Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil, Environ. Chem, vol.16, pp.391-400, 2019.

J. Wojcieszek, J. Jimenez-lamana, K. Bierla, M. Asztemborska, L. Ruzik et al., Elucidation of the fate of zinc in model plants using single particle ICP-MS and ESI tandem MS, J. Anal. At. Spectrom, vol.34, pp.683-693, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095540

J. Jiménez-lamana, J. Wojcieszek, M. Jakubiak, M. Asztemborska, and J. Szpunar, Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by Lepidium sativum and Sinapis alba plants, J. Anal. At. Spectrom, vol.31, pp.2321-2329, 2016.

D. Knapen, S. Bals, R. Blust, and N. Adam, The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios, Environ. Pollut, vol.194, pp.130-137, 2014.

V. Merdzan, R. F. Domingos, C. E. Monteiro, M. Hadioui, and K. J. Wilkinson, The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii. Sci. Total Environ, pp.316-324, 2014.

J. Wojcieszek, J. Jiménez-lamana, K. Bier?a, L. Ruzik, M. Asztemborska et al., Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish, Raphanus sativus L.). Sci. Total Environ, vol.683, pp.284-292, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02148731

K. Ki?ska, J. Jiménez-lamana, J. Kowalska, B. Krasnod?bska-ostr?ga, and J. Szpunar, Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS, Sci. Total Environ, vol.615, pp.1078-1085, 2018.

J. Yang, W. Cao, and Y. Rui, Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms, J. Plant Interact, vol.12, pp.158-169, 2017.

D. M. Schwertfeger, J. R. Velicogna, A. H. Jesmer, S. Saatcioglu, H. Mcshane et al., Extracting metallic nanoparticles from soils for quantitative analysis: method development using engineered silver nanoparticles and SP-ICP-MS, Anal. Chem, vol.89, pp.2505-2513, 2017.

K. N. Mahdi, R. J. Peters, E. Klumpp, S. Bohme, M. Ploeg et al., Silver nanoparticles in soil: Aqueous extraction combined with single-particle ICP-MS for detection and characterization, Environ. Nanotechnol. Monit. Manag, vol.7, pp.24-33, 2017.

W. Lee, J. Kwak, and Y. An, Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity, vol.86, pp.491-499, 2012.

F. Laborda, E. Bolea, G. Cepriá, M. T. Gómez, M. S. Jiménez et al., Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples, Anal. Chim. Acta, vol.904, pp.10-32, 2016.

L. Stavolone and V. Lionetti, Extracellular matrix in plants and animals: Hooks and locks for viruses, vol.8, pp.1-8, 2017.

G. Singh, C. Stephan, P. Westerhoff, D. Carlander, and T. V. Duncan, Measurement Methods to Detect, characterize, and quantify engineered nanomaterials in foods, Compr. Rev. Food Sci. Food Saf, vol.13, pp.693-704, 2014.

K. Loeschner, J. Navratilova, C. Købler, K. Mølhave, S. Wagner et al.,

E. H. Larsen, Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS, Anal. Bioanal. Chem, vol.405, pp.8185-8195, 2013.

Y. Dan, W. Zhang, R. Xue, X. Ma, C. Stephan et al., Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis, Environ. Sci. Technol, vol.49, pp.3007-3014, 2015.

F. Schwabe, S. Tanner, R. Schulin, A. Rotzetter, W. Stark et al., Dissolved cerium contributes to uptake of Ce in the three crop plants, Metallomics, vol.7, pp.466-477, 2015.

L. Zhao, J. R. Peralta-videa, M. Ren, A. Varela-ramirez, C. Li et al., Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies, Chem. Eng. J, vol.184, pp.1-8, 2012.

T. H. Hansen, T. C. De-ban, K. H. Laursen, P. Pedas, S. Husted et al., Multielement plant tissue analysis using ICP spectrometry, Plant Mineral Nutrients: Methods in Molecular Biology

F. Maathuis and . Ed, , p.141, 2013.

S. F. Durrant, Laser ablation inductively coupled plasma mass spectrometry: Achievements, problems, prospects, J. Anal. At. Spectrom, vol.14, pp.1385-1403, 1999.

J. S. Becker, R. C. Dietrich, A. Matusch, D. Pozebon, and V. L. Dressler, Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B At. Spectrosc, vol.63, pp.1248-1252, 2008.

N. Grijalba, A. Legrand, V. Holler, and C. Bouvier-capely, A novel calibration strategy based on internal standard-Spiked gelatine for quantitative bio-imaging by LA-ICP-MS: Application to renal localization and quantification of uranium, Anal. Bioanal. Chem, vol.412, pp.3113-3122, 2020.

A. Avellan, F. Schwab, A. Masion, P. Chaurand, D. Borschneck et al., Nanoparticle uptake in plants: Gold nanomaterial localized in roots of arabidopsis thaliana by X-Ray computed nanotomography and hyperspectral imaging, Environ. Sci. Technol, vol.51, pp.8682-8691, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01566237

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI