A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration - Archive ouverte HAL Access content directly
Journal Articles Journal of Systems Architecture Year : 2020

A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration

(1) , (1) , (2, 3)
1
2
3

Abstract

In the IoT-Fog-Cloud landscape, IoT devices are connected to numerous software applications in order to fully operate. Some applications are deployed on the Fog layer, providing low-latency access to resource, whilst others are deployed on the Cloud to provide important resource capabilities and process heavy computation. In this distributed landscape, the deployment infrastructure has to adapt to the highly dynamic requirements of the IoT layer. However, due to their intrinsic properties, the Fog layer may lack of providing sufficient amount of resource while the Cloud layer fails ensuring low-latency requirements. In this paper, we present a rewriting-based approach to design and verify the Cloud-Fog self-adaption and orchestration behaviors in order to manage infrastructure reconfiguration towards achieving low-latency and resources quantity trade-offs. We rely of the formal specification language Maude to provide an executable solution of these behaviors basing on the rewriting logic and we express properties with linear temporal logic (LTL) to qualitatively verify the adaptations correctness.KeywordsSelf-adaptation; Orchestration; Fog computing; Cloud computing; Formal methods; Rewriting logic; Linear Temporal Logic; Maude
Fichier principal
Vignette du fichier
S1383762120301132.pdf (1.5 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02870377 , version 1 (18-07-2022)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Khaled Khebbeb, Nabil Hameurlain, Faiza Belala. A Maude-based rewriting approach to model and verify Cloud/Fog self-adaptation and orchestration. Journal of Systems Architecture, 2020, pp.101821. ⟨10.1016/j.sysarc.2020.101821⟩. ⟨hal-02870377⟩
70 View
25 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More