, Université Catholique de Louvain et à l'Université Kongo, pour leur contribution à ce travail, leurs commentaires et suggestions ont grandement contribué au développement de cet article, Nous remercions Messieurs Jeanmart Hervé et Sumuna Temo, respectivement professeurs à l

. Références,

W. Ma?gorzata, Characterisation of the properties of alternative fuels containing sewage sludge, Fuel Processing Technology, vol.104, pp.80-89, 2012.

I. K. Kookos, Y. Pontikes, G. N. Angelopoulos, and G. Lyberatos, Classical and alternative fuel mix optimization in cement production using mathematical programming, Fuel, vol.90, pp.1277-1284, 2011.

, Les cinq familles des énergies renouvelables, 2013.

S. Noui, Etude numérique de la combustion des gaz dans un four de cimenterie, Université Hadj-Lakhdar Batna/Algérie, Mémoire de magistère, 2006.

A. M. Radwan, Different Possible Ways for Saving Energy in the Cement Production, Advances in Applied Science research, vol.3, issue.2, pp.1162-1174, 2012.

E. Mokrzycki and A. U. Bochenczyk, Alternative fuels for the cement industry, Applied Energy, vol.74, pp.95-100, 2003.

U. Kaantee, R. Zevenhoven, R. Backman, and M. Hupa, Cement manufacturing using alternative fuels and the advantages of process modeling, Fuel Processing Technology, vol.85, pp.293-301, 2004.

E. Mokrzycki, A. U. Bochenczyk, and S. Mieczyslaw, Use of alternative fuels in the Polish cement industry, Applied Energy, vol.74, pp.101-111, 2003.

A. R. Nielsen, High-Temperature Release of SO2 from Calciner Cement Raw Materials, Energy Fuels, vol.25, pp.2917-2926, 2011.

K. S. Mujumdar, A. Arora, and V. V. Ranade, Modeling of Rotary Cement Kilns: Applications to Reduction in Energy Consumption, Ind. Eng. Chem. Res, vol.45, 2006.

A. R. Nielsen, R. A. Wochnik, M. B. Larsen, P. Glarborg, and K. Dam-johansen, Mixing large and small particles in a pilot scale rotary kiln, Powder Technology, vol.210, pp.273-280, 2011.

. Fedelcem, Préserver les ressources naturelles : la valorisation des déchets en cimenterie, JP Jocobs, 2006.

. Cembureau, Les combustibles de substitution dans la production du ciment : bilan technique et écologique, Cembureau, 1997.

A. R. Nielsen, M. B. Larsen, P. Glarborg, and K. Dam-johansen, Devolatilization and Combustion of Tire Rubber and Pine Wood in Pilot Scale Rotary Kiln, Energy & Fuel, vol.26, pp.854-868, 2012.

C. Seyler, S. Hellweg, M. Monteil, and K. Hungerbuhler, Life Cycle Inventory for Use of Waste Solvent as Fuel Substitute in the Cement Industry, A Multi-Input Allocation Model, Int. J LCA, vol.10, issue.2, pp.120-130, 2005.

N. A. Madlool, R. Saidur, M. S. Hossain, and N. A. Rahim, A critical review on energy use and savings in the cement industries, Renewable and Sustainable Energy Reviews, vol.15, 2011.

A. Kolip and A. S. Fevzi, Energy and exergy analyses of a parallel flow, four-stage cyclone precalciner type cement plant, International Journal of the Physical Sciences, vol.5, issue.7, pp.1147-1163, 2010.

C. A. Tsiliyannis, Alternative fuels in cement manufacturing: Modeling for process optimization under direct and compound operation, Fuel, vol.99, pp.20-39, 2012.

G. Heidelberg and C. , Cimenterie de Lixhe à Liège (CBR)/Belgique, inédit, pp.1-2012

A. R. Nielsen, Sulfur Release from Cement Raw Materials during Solid Fuel Combustion, Energy Fuels, vol.25, pp.3917-3924, 2011.

J. Werther, M. Saenger, E. Hartge, T. Ogada, and Z. Siagi, Combustion of agricultural residues, Progress in Energy and Combustion Science, vol.26, pp.1-7, 2000.

. Cembureau, Environmental Benefits of Using Alternative Fuels in Cement Production, Cembureau, 1999.

A. R. Nielsen, Combustion of large solid fuels in cement rotary kilns, 2012.