F. Beckers and J. Rinklebe, Cycling of mercury in the environment: Sources, fate, and human health implications: A review, Crit. Rev. Environ. Sci. Technol, vol.47, pp.693-794, 2017.

C. C. Bridges and R. K. Zalups, Mechanisms involved in the transport of mercuric ions in target tissues, Arch. Toxicol, vol.91, pp.63-81, 2016.

C. A. Ribeiro, L. Belger, E. Pelletier, and C. Rouleau, Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus), Environ. Res, vol.90, pp.217-225, 2002.

S. Gentès, M. Monperrus, A. Legeay, R. Maury-brachet, S. Davail et al., Incidence of invasive macrophytes on methylmercury budget in temperate lakes: Central role of bacterial periphytic communities, Environ. Pollut, vol.172, pp.116-123, 2013.

A. Maulvault, A. Custodio, P. Anacleto, T. Repolho, P. Pousão et al., Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment, Environ. Res, vol.149, pp.77-85, 2016.

C. A. Ribeiro, C. Rouleau, E. Pelletier, C. Audet, and H. Tjälve, Distribution Kinetics of Dietary Methylmercury in the Arctic Charr (Salvelinus alpinus), Environ. Sci. Technol, vol.33, pp.902-907, 1999.

M. Korbas, P. H. Krone, I. J. Pickering, and G. N. George, Dynamic accumulation and redistribution of methylmercury in the lens of developing zebrafish embryos and larvae, JBIC J. Boil. Inorg. Chem, vol.15, pp.1137-1145, 2010.

M. Korbas, T. C. Macdonald, I. J. Pickering, G. N. George, and P. H. Krone, Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae, ACS Chem. Boil, vol.7, pp.411-420, 2011.

L. Polak-juszczak, Distribution of organic and inorganic mercury in the tissues and organs of fish from the southern Baltic Sea, Environ. Sci. Pollut. Res, vol.25, pp.34181-34189, 2018.

X. Peng, F. Liu, and W. Wang, Organ-specific accumulation, transportation and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish, Environ. Toxicol. Chem, vol.35, pp.2074-2083, 2016.

J. S. Becker, A. Matusch, and B. Wu, Bioimaging mass spectrometry of trace elements -recent advance and applications of LA-ICP-MS: A review, Anal. Chim. Acta, vol.835, pp.1-18, 2014.

M. R. Flórez, M. Aramendía, M. Resano, A. C. Lapeña, L. Balcaen et al., Isotope ratio mapping by means of laser ablation-single collector-ICP-mass spectrometry: Zn tracer studies in thin sections of Daphnia magna, J. Anal. At. Spectrom, vol.28, pp.1005-1015, 2013.

L. Lobo, R. Pereiro, and B. Fernández, Opportunities and challenges of isotopic analysis by laser ablation ICP-MS in biological studies, TrAC Trends Anal. Chem, vol.105, pp.380-390, 2018.

J. Claveau, M. Monperrus, M. Jarry, M. Baudrimont, P. Gonzalez et al., Methylmercury effects on migratory behaviour in glass eels (Anguilla anguilla): An experimental study using isotopic tracers, Comp. Biochem. Physiol. Part C Toxicol. Pharmacol, vol.171, pp.15-27, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01901354

I. Arleny, H. Tabouret, O. C. González, G. Bareille, O. F. Donard et al., Methylmercury bioconcentration in muscle tissue of the European eel (Anguilla anguilla) from the Adour estuary, Mar. Pollut. Bull, vol.54, pp.1031-1036, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00291964

P. Navarro, S. Clémens, V. Perrot, V. Bolliet, H. Tabouret et al., Simultaneous determination of mercury and butyltin species using a multiple species-specific isotope dilution methodology on the European, Anguilla anguilla glass eel and yellow eel, Int. J. Environ. Anal. Chem, vol.93, pp.166-182, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01557309

O. C. González, S. Bouchet, M. Monperrus, E. Tessier, and D. Amouroux, In situ experiments for element species-specific environmental reactivity of tin and mercury compounds using isotopic tracers and multiple linear regression, Environ. Sci. Pollut. Res, vol.20, pp.1269-1280, 2012.

F. Claverie, B. Fernández, C. Pécheyran, J. Alexis, and O. F. Donard, Elemental fractionation effects in high repetition rate IR femtosecond laser ablation ICP-MS analysis of glasses, J. Anal. At. Spectrom, vol.24, pp.891-902, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01977486

H. Tabouret, G. Bareille, F. Claverie, C. Pécheyran, P. Prouzet et al., Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, Mar. Environ. Res, vol.70, pp.35-45, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01557314

M. T. Tsui and W. Wang, Uptake and Elimination Routes of Inorganic Mercury and Methylmercury inDaphnia magna, Environ. Sci. Technol, vol.38, pp.808-816, 2004.

C. Lopes, C. Vale, J. Canário, V. Branco, and I. Moura, Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast, Environ. Pollut, vol.158, pp.2094-2100, 2010.

C. C. Bridges and R. K. Zalups, Transport of inorganic mercury and methylmercury in target tissues and organs, J. Toxicol. Environ. Health Part B, vol.13, pp.385-410, 2010.

P. Pereira, C. Lopes, M. Barata, O. Araújo, J. Canário et al., A new page on the road book of inorganic mercury in fish body-Tissue distribution and elimination following waterborne exposure and post-exposure periods, Metallomics, vol.7, pp.525-535, 2015.

T. Macdonald, N. J. Sylvain, A. K. James, I. J. Pickering, P. H. Krone et al., Effects of Inorganic Mercury on the Olfactory Pits of Zebrafish Larvae, Metallomics, vol.8, pp.514-517, 2016.

M. Mela, F. F. Neto, F. Yamamoto, R. D. Almeida, S. R. Grötzner et al., Mercury distribution in target organs and biochemical responses after subchronic and trophic exposure to Neotropical fish Hoplias malabaricus, Fish Physiol. Biochem, vol.40, pp.245-256, 2013.

H. H. Harris, The Chemical Form of Mercury in Fish, Science, vol.301, 1203.

F. Ribeyre and A. Boudou, Etude expérimentale des processus de décontamination chez Salmo gairdneri, après contamination par voie directe avec deux dérivés du mercure (HgCl 2 et CH 3 HgCl)-Analyse des transferts aux niveaux 'organisme' et 'organes', Environ. Pollut. Ser. A Ecol. Boil, vol.35, pp.203-228, 1984.

P. Pereira, C. Lopes, O. Araújo, J. Canário, A. Almeida et al., Fish eyes and brain as primary targets for mercury accumulation-A new insight on environmental risk assessment, Sci. Total. Environ, vol.494, pp.290-298, 2014.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI