B. , 1 'Pre-prediction' step: Construction of the common transporting velocity

S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys, vol.229, pp.978-1016, 2010.

H. Guillard and . Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes, Comput. Fluids, vol.33, pp.655-675, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00072433

H. Guillard and C. Viozat, On the behavior of upwind schemes in the low Mach number limit, Comput. Fluids, vol.28, pp.63-86, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00072433

K. Kitamura and E. Shima, Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes, J. Comput. Phys, vol.245, pp.62-83, 2013.

S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math, vol.35, pp.629-651, 1982.

R. Klein, Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I: One-Dimensional Flow, J. Comput. Phys, vol.121, pp.213-237, 1995.

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math, vol.7, pp.159-193, 1954.

X. S. Li and C. W. Gu, An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour, J. Comput. Phys, vol.227, pp.5144-5159, 2008.

X. S. Li and C. W. Gu, Mechanism of Roe-type schemes for all-speed flows and its application, Comput. Fluids, vol.86, pp.56-70, 2013.

M. Liou, A sequel to AUSM: AUSM +, J. Comput. Phys, vol.129, pp.364-382, 1996.

M. Liou, A sequel to AUSM, part II: AUSM + -up for all speeds, J. Comput. Phys, vol.214, pp.137-170, 2006.

M. Liou and C. J. Steffen, A new flux splitting scheme, J. Comput. Phys, vol.107, pp.23-39, 1993.

A. Meister, Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit, SIAM J. Appl. Math, vol.60, issue.1, pp.256-271, 1999.

Y. Moguen, E. Dick, J. Vierendeels, and P. Bruel, Pressure-velocity coupling for unsteady low Mach number flow simulations: An improvement of the AUSM + -up scheme, J. Comput. Appl. Math, vol.246, pp.136-143, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00929726

Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels, and E. Dick, Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, J. Comput. Phys, vol.231, pp.5522-5541, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00764270

A. Pascau, Cell face velocity alternatives in a structured colocated grid for the unsteady Navier-Stokes equations, Int. J. Numer. Meth. Fluids, vol.65, pp.812-833, 2011.

C. M. Rhie and W. L. Chow, Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA J, vol.21, issue.11, pp.1525-1532, 1983.

F. Rieper, A low-Mach number fix for Roe's approximate Riemann solver, J. Comput. Phys, vol.230, pp.5263-5287, 2011.

J. Sachdev, A. Hosangadi, and V. Sankaran, Improved flux formulations for unsteady low Mach number flows, AIAA Paper No 2012-3067, 42 nd AIAA Fluid Dynamics Conference, 2012.

E. Shima, On the improvement of the all-speed flux scheme for very low Mach number flows, AIAA Paper No 2013-2696, 21 st AIAA Computational Fluid Dynamics Conference, 2013.

E. Shima and K. Kitamura, Parameter-free simple low-dissipation AUSM-family scheme for all speeds, AIAA J, vol.49, issue.8, pp.1693-1709, 2011.

L. L. Takacs, A two-step scheme for the advection equation with minimized dissipation and dispersion errors, Mon. Wea. Rev, vol.113, pp.1050-1065, 1985.

H. Tang, On the sonic point glitch, J. Comput. Phys, vol.202, pp.507-532, 2005.

E. Toro, Riemann solvers and numerical methods for fluid dynamics -A practical introduction, 2009.