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Abstract - The central aim of this paper is to introduce a novel active inline mixer able to efficiently
mix highly viscous fluids by laminar chaotic advection. The perturbation of the flow is imposed by three
rotating arc-walls in a plane channel. By simple scaling arguments we demonstrate that a good mixing
could be obtained corresponding to an optimum value of the Strouhal number that depends solely on
the Péclet number and the ratio between angular speed of the walls and axial velocity of the flow. This
phenomenological conclusion is corroborated by the results of direct numerical simulations.

Nomenclature

A area, m2

C tracer concentration
d diffusion length, m
D mass diffusivity, m2/s
L length, m
k time-averaged velocity ratio
K maximal velocity ratio
P pressure, Pa
Pe Péclet number
R radius, m
Re Reynolds number
St Strouhal number
t time, s
T period of rotation, s
U inlet velocity, m/s
V velocity, m/s
W width, m
y transversal coordinate, m

Greek symbols
∆ depth of protrusion, m
µ dynamic viscosity, Pa.s
ξ length ratio
ρ density, Kg/m3

σ mixing indicator
τ time unit, s
Ω rotational speed, rad/s
Index and exponent
c cell
m mixing
r residence
t tangentiel
0 amplitude
∗ non-dimensional parameter
− time-averaged
min minimum
maxmaximum
1, 2, 3 numbering index

1. Introduction

Mixing of pasty materials in the absence of inertial contributions (i.e. at low Reynolds num-
bers Re) is primordial to many industrial applications related to food processing, cosmetics,
biotechnology and oil field industry. For highly viscous fluids the natural mixing mechanism
via molecular diffusion is highly insufficient. Enhancement and reduction of the timescale of
mixing could be achieved by generating inertial turbulence in the flow. However, for highly
viscous fluids achieving high Re translates into additional energetic costs and risks of degrada-
tion of the texture of the final product. Hence, the increase of Re becomes problematic. Yet, a



solution exists which consists of triggering laminar chaotic advection to promote mixing. In a
two-dimensional steady flow, laminar chaotic advection may be triggered by a time dependent
forcing of the flow [1].

Given the two available options of batch [1, 2] and open flow inline mixers [3], we chose the
latter for several reasons: high production rates and a reduction of operating time by eliminating
filling and pump-out cycles. Inline mixers may be either passive [4, 5] or active [6, 7, 8]. In this
study, we focus on a two-dimensional active inline mixing concept.

Traditional inline mixers currently used in industries remain to this day not fully optimised,
essentially because the mixing is carried out throughout the entire length of the flow channel
by using moving objects [9, 10]. When the mixing length becomes larger than required, several
drawbacks appear. For instance, degradation of the product could be triggered by over-mixing,
not to mention the increased final product price to compensate the additional input energy during
the over-mixing.

Given the above mentioned reasons, we propose in the current study a novel active inline
mixer with three rotating arc walls aimed to locally mix highly viscous fluids. The paper is
organised as follows. The concept of the rotating arc walls mixer is introduced in Sec. 2.1.
Simple scaling arguments for the concept of the rotating arc-walls mixer are presented in Sec.
2.2. Preliminary numerical simulations which fully corroborate the theoretical arguments are
detailed in Sec. 2.3. The paper closes with a summary of the main conclusions and several
perspectives, Sec. 3.

2. The rotating arc-walls mixer

2.1. Design of the rotating arc-walls mixer

A sketch of the rotating arc-walls mixer (RAW mixer) is illustrated in Fig. 1. The RAW
mixer is composed of a plane channel of width W and length L = 5W , with three circular

cylinders of equal radii R =
W

2
having their axis of rotation perpendicular to the plane of the

channel. The cylinders penetrate into the channel with a depth of protrusion ∆ =
W

6
.

Figure 1 : Schematic illustration of the rotating arc-walls mixer.

Chaotic mixing is developed by modulating the rotational speed of the cylinders in relation



with the mean input velocity U . The three cylinders oscillates at the same period T and ampli-

tude Ω0. The upper ones are synchronized Ω1,2(t) = Ω0 sin

(
2π

T
t

)
while the rotation of the

bottom one is phase shifted by an angle of π, Ω3(t) = −Ω0 sin

(
2π

T
t

)
.

2.2. Scaling arguments to predict the mixing condition

The mixing problem is governed by the following non-dimensional numbers:

1. The Péclet number defined as Pe =
UW

D
where U the incoming mean flow speed and D

the molecular diffusion coefficient.

2. The Strouhal number defined as St =
W

TU
where T is the period of rotation of the arc-

walls.

3. The velocity ratio k =
Vt
U

represents the ratio of the time-averaged tangential speed of

the rotating arc-walls Vt to the mean inlet velocity U .

4. The non-dimensional mixing length introduced as ξ =
Lm

W
where Lm is the length of the

mixing zone, see Fig. 1.

The interface between two fluids is initially located at mid-width of the channel. We assume
that to insure an efficient mixing the displacement of a fluid particle initially located near a wall

should exceed half of the channel width
W

2
during half a period

T

2
. This condition translates

into a first inequality:
k ≥ St (1)

The idea behind the RAW mixer concept is that the cylinders will generate chaotic La-
grangian structures in the flow. The chaotic advection will stretch, fold and split fluid elements
down to the scale:

d =
W

2n
(2)

Here d is the characteristic diffusion length and n−1 is the number of stretching and folding cy-
cles undergone by the fluid elements. Then, the corresponding characteristic time for diffusion
after n− 1 cycles is:

tm =
d2

D
=

W 2

4nD
(3)

A phenomenological condition for the mixing of two fluid elements to be efficient is that the
characteristic mixing time tm should be smaller or equal to the characteristic residence time tr
in the mixing zone.

tm ≤ tr (4)

The characteristic residence time may be estimated as tr =
Lm

U
. Then, the mixing condition (4)

becomes:

n ≥ 1

ln(4)
ln

(
Pe

ξ

)
(5)



At this point, we find it useful to write the characteristic residence time tr as: tr = nT + δt
where 0 ≤ δt ≤ T . With the mixing conditions (1) and (5) we obtain:

k ≥ 1

ξln(4)
ln

(
Pe

ξ

)
(6)

We define the tangential speed of a cylinder as Vt = ΩR where Ω is the angular speed of a
rotating cylinder averaged over the characteristic residence time of a fluid particle in the mixing
zone:

Ω =
1

tr

∫ tr

0

Ω0

∣∣∣∣sin(2πt

T

)∣∣∣∣ dt (7)

From the inequality (6) and Eq. (7), we obtain the following mixing condition:

K ≥ πSt

ln(4)

ln

(
Pe

ξ

)
2n+ sin2(πξSt)

(8)

Here K is defined by K =
Ω0R

U
.

Fig. 2(a) displays the theoretical mixing surface defined by Eq. 8 for n = 1 and ξ ≈ 2. For
any given Pe, the space (St, K) may be divided in two regions by a curve K = K(St) which
has a local minimum, Fig. 2(b). The region of the space (St, K) above this curve corresponds
to good mixing whereas the region below corresponds to poor mixing.

(a) (b)

Figure 2 : (a) Mixing efficiency surface based on correlation (8). (b) Projection of the mixing surface
onto (St−K) plane. Different colours/contours refers to different Pe.

To achieve better mixing, it is evident that the Strouhal number St should be increased
by simply decreasing the period of rotation T (faster forcing). However, from the analytical
solution given in (8), there exists an optimal Strouhal number St, beyond which the increase of
St results in a decrease of fluid displacement and thus in a loss of the mixture quality.

It is important to mention that several minima exist corresponding to different ranges of
Strouhal number meaning that for each range of St the rotational speed of the cylinders should
be adapted to the mean inlet velocity of the flow.



2.3. Numerical simulations

To validate the simple physical arguments presented in Sec. 2.2., two-dimensional direct
numerical simulations were performed using a CFD code developed in-house already validated
in a number of previous studies [11, 12, 13]. The non-dimensional continuity (9), momentum
(10) and advection-diffusion (11) equations were solved for a time-dependent laminar incom-
pressible newtonian fluid flow.

∇ ·V∗ = 0 (9)
∂V∗

∂t∗
+ (V∗ · ∇)V∗ = −∇P +

1

Re
∇ ·
(
(∇V∗) + (∇V∗)T

)
(10)

∂C∗

∂t∗
+∇(V∗ · C∗) =

1

St
∇2C∗ (11)

Here C∗ =
C − Cmin

Cmax − Cmin

(Cmin = 0 and Cmax = 1), V∗ =
V

U
and t∗ =

t

τ
are respectively the

dimensionless concentration, velocity and time. τ is the unit time τ =
W

U
.

2.3.1. Numerical method and mixing indicator

The equations (9, 10, 11) are solved by the means of an unstructured finite volume method
using an unstructured finite grid of 24 000 cells (tetrahedral, hexahedral) generated by the open-
source code Gmsh [14]. The grid independence of the numerical results was tested by compar-
ing simulations performed with various grid refinements.

The concentration field is initially distributed as:{
C∗ = 0 for 0 ≤ y∗ ≤ 1

2

C∗ = 1 for 1
2
≤ y∗ ≤ 1

(12)

Here y∗ =
y

W
is the non-dimensional coordinate in a direction transversal to the mean flow.

One classical measure for the degree of homogeneity of the mixture is the standard deviation
of the concentration C defined as:

σ =

√
1∑
cAc

∑
c

Ac(C∗
c − C∗

m)2 (13)

Here Cc is the concentration in the mesh cell, Ac is the area of the mesh cell and C∗
m in the mean

concentration in the entire region calculated as:

C∗
m =

1∑
cAc

∑
AcC

∗
c (14)

The standard deviation of the scalar field calculated in a zone of width 0.285 W located
downstream of the three cylinders and averaged on the last five periods of rotation.

2.3.2. Fluid properties and boundary conditions

Two identical Newtonian fluids with a density ρ = 103 kg.m−3, a dynamic viscosity µ =
1 Pa.s and a molecular diffusion D = 10−9 m2/s are considered as working fluids.



A Poiseuille velocity profile is imposed at the inlet and no-slip boundary condition is pre-
scribed at the solid walls.

The rotational speed of the cylinders 1 and 2 on the top wall varies in time according to:

V ∗
t1,2

(t∗) = K sin(2πSt t∗) (15)

The cylinder 3 on the bottom wall is phase shifted by π with respect to the oscillation of the first
two cylinders:

V ∗
t3

(t∗) = −K sin(2πSt t∗) (16)

2.3.3. Numerical results

We show in Fig. 3(a) the temporal evolution of the scalar field along the RAW mixer. These
results refer to St = 1, K = 40, Re = 1 and Pe = 106. It is clear that the mixing is progres-
sively achieved as the fluid traverses the channel and as the time passes.
As time progresses one notes the formation of Lagrangian coherent structures in the flow sepa-
rated by a hyperbolic points essential for the mixing of two fluids by laminar chaotic advection.
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Figure 3 : (a) Temporal evolution of the scalar field along the RAW mixer. (b) Temporal evolution of the
standard deviation σ of the scalar field.

The mixing efficiency defined as the standard deviation σ of the scalar field C is presented in
Fig. 3(b). It decreases from 0.5 at t = 0 when the two fluids are separated by a straight interface
to a value close to zero after a finite time when the two fluids are perfectly mixed.

The simulations are repeated for several St and K at a fixed Re = 1 and Pe = 106. The
mixing efficiency results of 96 interpolated numerical simulations are summarised in Fig. 4.



Figure 4 : Variation of the standard deviation of the scalar field C according to the Strouhal number
and the velocity ratio at constant Re = 1.

The mixing efficiency map presented in Fig. 4 indicates the existence of an optimal St as
theoretically predicted and an increase of the mixing efficiency when K is increased.

3. Conclusions, outlook

The objective of this study was to efficiently mix highly viscous fluids at minimal energetic
costs. This was achieved by implementing a novel type of inline mixer that uses the laminar
chaotic advection as a mechanism to mix such viscous fluids by generating Lagrangian coher-
ent structures.Three rotating arc-walls induce an unsteady perturbation of the flow essential to
achieve efficient mixing in a two dimensional system.

Simple scaling arguments prove the feasibility of the mixing strategy. We derived analyti-
cally an optimum mixing condition in terms of angular speed of the walls, Strouhal number and
Péclet number.

To reinforce the theoretical predictions, numerical simulations were performed. The numer-
ical results confirmed the existence of an optimum Strouhal number and thus the validity of our
simplified physical model.

This study helped us to understand the physics underlying the transport process and high-
lighted the role of the different parameters involved. The next step is to study experimentally the
mixing efficiency of the RAW mixer. This novel inline mixer will be later used to homogenise
the temperature in different industriel processes.
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