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Abstract

For low Mach number ow calculation, when acoustic waveséh&w be captured, semi-
implicit methods allow to avoid the time-step limitatiomatharises when explicit schemes
are used. A method is suggested to solve the boundary egsiatidhat the semi-implicitness
of the algorithm is maintained, as well as its pressureeilocoupling. This method
is studied theoretically and numerically, in the low Machmher regime. Partially non-
re ective characteristic-based boundary conditions hwifie linear relaxation form sug-
gested by Rudy and Strikwerdal, [Comput. Phys36:55—-70, 1980], are considered. It is
shown that their properties, well known in the framework xplecit schemes, are recov-
ered with the proposed semi-implicit treatment and an @@L number signi cantly
larger than unity.

Key words: Characteristic-based boundary conditions, Low Mach nundve
Semi-implicit algorithm, Acoustics

1 Introduction

For low Mach number ow calculations that include the captof acoustic waves
propagating in the ow, semi-implicit methods allow to addhe time-step limi-
tation that arises when explicit schemes are used. Thes oit particular impor-
tance to maintain the semi-implicitness of the algorithmewlsolving the bound-
ary equations. Among the variety of arti cial boundary taajues (see Colonius
[1]), characteristic-based boundary conditions, as sstggedy Thompson [19] and
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Poinsot and Lele [12], are widely used. An important advgetaf such an ap-
proach is that the computational domain does not have to behfauger than
the ow region of interest. Therefore, the computationastcis not drastically in-
creased by the boundary treatment. Despite the importaotiaiof studies on
characteristic-based boundary conditions, accordingdatithors' knowledge, no
investigation of the semi-implicit solution of characstit-based boundary equa-
tions in SIMPLE-type algorithms has been published’he aim of the present
paper is to provide a detailed description of an effectivaidgeplicit solution of
characteristic-based boundary equations.

In addition to computational cost considerations, the lien&f characteristic-
based boundary conditions are recognized when acoustiesn@we to be prop-
erly handled at the boundary (see Ref. [2]). For examplespezi cation of an
incoming acoustic wave at the outlet can be carried out byliegnthe wave am-
plitudes in a straightforward manner, and this is not the e@isen a time-varying
out ow pressure is simply imposed. Furthermore, the chiaréstic-based approach
allows radiation of acoustic waves to the far eld.transparent — or non-re ective
— boundary conditions. This is suitable when the sound aldf interest, and
avoids convergence problems caused by unphysical reetibet us underline
that characteristic-based boundary conditions are natrtheway to obtain trans-
parency and to facilitate proper handling of acousticsabttundary (see.g.Refs.
[3,16], where a buffer zone approach combined with a charatic analysis allows
also both the proper handling of boundary quantities andl#meping of outgoing
acoustic waves). The present study is focused only on ttes cicharacteristic-
based methods for the boundary conditions.

As a rst approach of such characteristic-based treatmiat,linear relaxation
form of the non-re ective condition, suggested by Rudy andk®erda [15], is
employed in the present study. It can be understood as a weakef the crude
full non-re ective condition, which consists in setting tero the temporal rate of
change of the entering acoustic wave amplitude. The lirdakation method rep-
resents a trade-off between the imposition of variablesthagartial re ection of
acoustic waves. This is carried out by lItering the enteraggpustic waves, so that
only the high frequency band is concerned with the non-révedreatment. Selle
et al. [17] established that the relaxation coef cient is propamtl to the highest
frequency of the acoustic waves sent back into the compuatatdomain. There-
fore, the smaller the gap between the current and the impgoesgdures, the larger
the band of the re ected acoustic waves at the outlet. Faligwhis approach, the
linear relaxation must be applied to the pressure at thepwthich behaves as
a low-pass lter for the re ected waves. In particular, thieeitt imposition of the
static pressure at the outlet is fully re ective for acoustiaves. Combined with the

1 Some numerical simulations with a semi-implicit pressurgrection method were pre-
sented in Ref. [20], but without information concerning thethod employed for the semi-
implicit boundary treatment.



time evolution equations of the primitive variables of thewv (see Refs. [12,19]),
the relaxation form appears suitable to avoid the drift @f pnessure which may
arise if the full non-re ective conditions are applied. Thkowed re ection of low
frequency waves permits to relate the pressure variabidariee domain to the
static pressure de ned outside, thus ensuring the weleg@onsss of the problem
(seee.qg.[12] for details on well-posedness). Similar results condbe velocity at
the inlet of the computational domain.

This paper is organized as follows. First, the algorithmafework used, which
consists in a SIMPLE-type algorithm in co-located arrangetwith second-order
accuracy in time and space, is described in section 2. A focuthe pressure-
velocity coupling involved in the interior of the computatial domain was found
necessary since the boundary treatment is designed in suafthat this pressure-
velocity coupling is accounted for therein. Then, in sett® characteristic-based
boundary conditions with the linear relaxation approactpleyed by Rudy and
Strikwerda [15] are presented. An expression for the réiemacoef cient of the
velocity at the inlet is suggested. The semi-implicit swlntof the characteristic-
based boundary conditions is detailed in section 4. Bothrilet and the outlet
treatments are considered. Finally, in section 5, the dhiyabf this boundary
treatment is investigated by considering 1-D and 2-D tes¢savith linear acoustic
waves propagating in low Mach number ows.

The key point of the suggested approach is the derivation th® momentum and
velocity equations of a relation between pressure and itgloorrections at the
boundary, that mimics the SIMPLE approximation used in tierior of the com-
putational domain. This relation, together with the comagon equations and the
equations satis ed by the temporal rate of change of the \mawglitudes, written in
the interior and at the boundary of the computational dopmaspectively, allows
the calculation of the pressure and velocity correctiontherboundary cells.

2 Algorithm for the interior of the computational domain

In this section, the pressure correction algorithm for titerior of the computa-
tional domain is presented. In Ref. [10], we described a ngeresral formulation
of such predictor-corrector algorithm. A simpli ed versi@f this formulation is

adopted in the present contribution, with the same resaitghie set of computa-
tions considered. A step-by-step presentation of the glgoris given here. For
explanations on the theoretical background of the usedi#igo, the reader is re-
ferred to [10]. In the present section, it will be worth déisitrg with details the

pressure-velocity coupling aspects in the basic algoriginte they are mimicked
by the proposed treatment of the boundary equations exgulamsection 4.

For sake of simplicity, a one-dimensional ow of a perfectldadeal gas in a con-



stant section pipe is considered. From nowodgnotes the coordinate in the ow
direction. The ow is governed by the Euler equations,

@t @(%Y =0; (1a)

@%Y + @(%Y + p) =0; (1b)

@%B + @(%vH =0; (1c)

E=e+ %vz; %H= %E+ p; %e Ll; (1d)

wheret, % p, v, e, E andH represent time, density, pressure, velocity, internal
energy, total energy and total enthalpy per unit mass, otisps. Furthermore,
denotes the speci ¢ heats ratio. Thexis along the pipe is divided inté cells of
length x. A nite volume formulation is applied, with co-located vables at the
centres of the cells.

The solution procedure is in classic prediction-correctam. Each time-step!

n + 1 is decomposed into a predictor step determining varialilas antermediate
level denoted by, followed by a corrector step with correction quantitiesaoted
by O Furthermore, since the equations are non-linear, itaratdenoted bk are
used in between the time leveisandn + 1. At the rst iteration, variables at level
k are equal to those at time level The velocity written with subscrigt+ 1=2
is the transporting velocity. The velocity as a transpodedntity is part of the
transported momentum and is de ned with a slope-limiterhrodt

Prediction Predicted values are derived from the continuity equafia) and
the momentum equation (1b). For example, the momentum ieqguatwritten as

h i
o 306) 48] + (o) *
( h i)
NS =R C SO TS o
( h i)
%6 1+ 5 i1 (9 (%Y . (%Y, Voo,

+ p!(+1:2 p!( 12 =01 (2)

[ —

2

The face value of pressure is taken through the low Mach nurad@ptation of
AUSM™ [7], with the scaling function of the AUSKM-up scheme [8], but without
the velocity diffusion term in the pressure interpolatienniula and without the
pressure dissipation term in the de nition of the Mach numddehe face [10]. This
means that the face pressure is determined by a polynongspoiation between
values on both sides of the face, obtained from the de nition

Pisr=2 = fo (ML)pL + Ty (MR)pr; 3)

where the polynomialf; andf , are function of the Mach number on both sides,
and where the face values are obtained by means of the sioperimethod. The



face value of the velocityX,, _, is calculated through the AUSMscheme. The dis-
cretization of the continuity equation is similar as the oféhe momentum equa-
tion. Thus, the time integration is second-order backwadlithe space discretiza-
tion is second-order TVD, by means of the limiter functiomai&d by . The pa-
rameter stands formally for t= x and is determined in practice GFL,=Viax,
whereCFL, denotes a chosen convective CFL number apg is the maximum
value of the convective velocity in the eld. The convectieems in Eq. (2) and in
the discretized continuity equation are assumed to beipesas they are positive
in the computations considered later.

From the predicted values of densk and momentun{%y;, predicted values

of velocity v/ are determined at the nodes. Combined vath= p¥, predicted
valuese?, E7 and(%H)? are obtained according to Egs. (1d). Next, predicted values
of the face pressurg’,, -, are calculated with the same procedure aspfor_,.

To calculate predicted values of face veloaify, _,, the Momentum Interpolation
technique is used. It is based on the observation that theemtbim equation (2) at

a node is of the form

Bi = Ai(%Y; + 2ih3(%\)i? A4(%Y; + (%Y : + P P
with
( h i)
Bi = 5 (%Y (%Y (%Y, Vi
( 1 h i)
+ (%Y |+ 5 i1 %y (%), (%Y 2 V1o

andA; = V&, _,. A similar equation is postulated at a face as

1 h i
Biriz2 = Ajs122(%Yy o+ > 3%V 1o 4OV o+ (% it * Py Pl

where two terms in the balance of the momentum uxes arepotated, but where
the inertia term and the pressure term are written direttiiyeaface. The so-called
classic Rhie-Chow interpolation is used, namely:

2 :i+ 1 Bi+1=2:E+Bi+l_
Ai+1:2 Ai Ai+1, Ai+1:2 Ai Ai+1.

The precise way of interpolation is in fact not critical, pised that the linear inter-
polation involves convective terms only, without a partred tnertia term [6,10,11].
The transporting face velocity is deduced from the momergquoation by

? — ? ' .
Viv = = (%095 = 0/F7’+1 =21

where the face density is de ned with the slope-limiter noeth



Correction As regards pressure-velocity coupling, a critical poihthe algo-
rithm is the relation between pressure corrections anccitgloorrections. Follow-
ing the SIMPLE approximation, an explicit relation betweaomentum correc-
tions and pressure corrections can then be obtained fromaémeentum equation,
as

3
Vi + > Y= (P P 1) (4)

or else, in a even further simpli ed form which is chosen ie fhresent algorithm,

3
v+ > (Y= (P P 1) (5)

Considering the smallness of the time-step that has beahinghe cases con-
sidered in the present study, numerical results with Eqa( Eq. (5), or else,
by approximating the left hand side of Eq. (5) B{#6y°=(2 ), are in fact found
to be identical. Thus, the exact form of the SIMPLE approxioraadopted in the
present study appears to be not critical. In Eq. )., andp? ,_, are interpolated
with the AUSM" -up polynomials (see Eq. (3)), as

Pyp = f;;r(l\/hf'))pio+ fo (M{)PR

Corrections for pressure are derived from the energy egualihis equation is
discretized in the same style as the continuity equatiorfEthomentum equation

by

h i
o 3B+ 3(%B0 406B] + (%B] *
(

1 h i
+ (%H; + >  (%H7) (%H? (%H] 1 Vi
( h i)
(0/ ? + 1‘ . 0% ? % ? % ? ?
oH); 4 2|1((0|'D)(°|'Di1 (%H) 5, Vv 1o
+(%HY o, (%HYY 1, =0: (6)
The corrections on the enthalpy ux terms are written as
(%HY1 o = Hg (%000 0 + (R oV (7)

withH?, ., = (%H?,, -,=%, -,, Wwhere both terms in the ratio are de ned with the
slope-limiter method. The corrections for total energy totdl enthalpy are written
as

1
(%Bioz —]_pio; (% i0+1=2 = —]_pio+1=2: (8)

The momentum correction in Eq. (7) is written in SIMPLE-sty$imilarly to (5),



as
2 3
Vispo t 2 (%\)i0+1 = = (pi0+1 pio): 9)

Substitution of (8) and (9) into (7) and (6) leads to an exeehBoisson equation
for the pressure corrections, where, again, gradient tarmyapproximated to rst-
order. This equation is solved by a Gaussian eliminatiorcgutare. The pressure
corrections are then further used to determine correctbtise momentum values
in the nodes and at the faces by (5) and (9). Density is ceudny9 = ( @%7p’.
The whole procedure is repeated until convergence. Thigtsethen in equations
for mass, momentum and energy, discretized in the same wtyeasomentum
equation (2), with values on th2 level andk level replaced by values on the
time leveln + 1. All equations use the same value of the transporting vigi@ti
the faces.

3 Characteristic-based boundary conditions: linear relaxation form

In this section, the temporal rate of change of the convedivd acoustic wave
amplitudes is introduced, as well as the linear relaxatiwmffor the partially non-
re ective treatment at the inlet and at the outlet. The joation of this approach
at low Mach number is addressed in the Appendix section.

First, it is worth noticing that the following charactertstelations are derived from
the set (1) of equations (seeg. Thompson [19]),

dp _ _ .
Voc dv=0 on dx=v c;

d% C—lzdp=0 on dx = v;

dp _ _ .
%C+dv—0 on dix=v+c:
Then, let us set

Li=(v 9 5@ @ (108)
Lo=v @% 4@ ; (10b)
Lz3=(v+ 0 %C@p+ @v (10c)



The quantitied_;, de ned fori = 1;2;3in 1-D, are interpreted as the temporal
rate of change of the wave amplitudes at the boundary [12TI8y satisfy the
so-called LODI (for Locally One Dimensional and Inviscidjuations [12,19],

%
@)/04' %(Ll‘k L3)+ L,=0; (113.)
@+ (s L 1)=0; (11b)
@p + g%'-l"‘ L) =0: (11c)

Following Ref. [15], a linear relaxation form of the full nawe ective outlet condi-
tionL, = 0 can be considered,

Li=Kp(p P); (12)

wherep’ andp are the target and the current value of the pressure at thet,out
respectively. The relaxation coef cieit, is related to the Itering level of outgo-
ing acoustic waves (see Ref. [17]), so tKaf 6 O corresponds to an acoustically
partially re ective outlet. By using Eq. (12), the re ectioof high frequency out-
going acoustic waves can be avoided while maintaining angiradue of the mean
pressure.

Using Eq. (12) under the hypothesis of a constant targespresthe re ection
coef cient at the outlet is given by [17]:

;2!: 13)

Routet (! ) = -
1 i
%cKy

Assuming thatK, is independent of the frequency, Sedeal. [17] derived its
expression from a particular value of the frequency. Theysetthe frequency that
corresponds to the largest acoustic wavelength obtainaldeduct of lengthL.
Such a frequency, so-called cut-off frequency, was est@thas

f _ ! cut-off _ (1 anqax)cmin_
cut-off — 2 - 4L )

where M nhax and cypin designate the maximum Mach number and the minimum
sound speed in the domain, respectively. Then, Sled. [17] required that half

of the acoustic energy would be fed back into the domain foa@ustic wave of
frequencyf .ot Crossing the outlet sectione.:

jRoutlet (! cut-off)j2 =1=2 (14)
Combination of relations (13) and (14) provides the expoessf K ,:

_ @ M),
Ko= ——gr (19)



The role of the factofi=2 in the right hand side of Eq. (14) will be illustrated by
numerical experiments in section 5, as well as in the singtpration suggested
underneath for the inlet treatment.

Similarly as for the outlet, a linear relaxation of the fubmre ective condition
L; = 0 can be considered at the inlet, as

Ls= Ky(v V), (16)

whereVY is the target velocity. To obtain a suitable expressioK @f a frequency
analysis similar to the one given in Ref. [17] yiefds

Rinlet(! ): 1% (17)

Kv

Next, assuming that at the inlet section, the re ection coent is, again, such that
jRinet (! cut-of))j? = 1=2, provides the expression &f,, namely:

(1 M r%ax)cmin .

(18)

4 Semi-implicit treatment of the characteristic-based boundary conditions

In this section, a method to solve the boundary equationswith the relaxation
forms given in section 3, in combination with the algorithsed in the interior of
the computational domain, is described. It is achieved bpducing ghost cells at
the inlet and at the outlet of the domain. In the one-dimeraioase considered in
this section, two ghost cells are introduced at each extyeshthe domain, in order
to use second-order accurate nite differences for theigrad. The ghost cells are
numberedL and2 at the inlet, andN 1 andN at the outlet. On these ghost cells,
the primitive variables density, velocity and pressureicitare the unknowns of
the LODI equations (11), are calculated following the pc&adn-correction proce-
dure used for the interior solution. This allows to relatedicted and correction
values on ghost cells to predicted and correction valued®firiterior solution,
respectively, in order to mimic the suitable pressure-sigfacoupling used in the
interior algorithm.

2 Expression (17) of the re ection coef cient at the inlet walso considered in Ref. [13].



4.1 Inlet treatment
At the inlet, the temporal rate of change of the amplitudeheféntropic waves is
written as

L= K% %); (19)

where% is the target inlet density ando, a relaxation coef cient. Furthermore,
from Eq. (18),

I—3 = in ; in = (1 anqax)cmin; (20)

whereVY is the target inlet velocity. Eqs. (19) and (20) are used dis deand 2.
Moreover,L ; is given by Eq. (10a).

Prediction % is calculated from the continuity equation (11a),

G _AR+RT, %K v W %K AV v
2t 2c . " L 2c 1 1 2 X
k K 4+ 4K k
(V C)l 3p1 4p2 p3+ K0/<(°/§ %):0 (21)

2(ct)? X
% is calculated similarly from the mass equation (11a) wnitte cell2.

From the velocity equation (11b) written on c2Jl

? ? ?
3v; +4v; v,

vi A+ V) 1+1

L k
2 t A f)i 2 x
1 v ¢ 3k +4p§ Pk 1 v ow
= + = =0 (22
2 %c 2 X 2 " (22)

2

v; andv; are unknown at this stage. However, with the momentum eqju#)
written on cells3 and4, a linear system is obtained, allowing to computev; as
well asv;. Then, knowing/; andvs, v; can be directly calculated from the velocity
equation (11b) written on cell.

Correction First, Eq. (5), which is valid for the cells located in théanor of the
computational domain, is simpli ed to

OY= 2 (a0 1) 23

This simpli cation is justi ed by the very small values of éhconvectiveCFL num-
ber that we will use in the numerical tests. On c®lithe velocity correction is

10



deduced as
0 — t 0 0y .
V3 = 30/57)(034 2); (24)

where the pressure has been interpolated centrally (cleorgistent with AUSM
pressure interpolation at low Mach number). The velocityatipn (11b) on cell
and on iteration levet + 1, is

vt Aag+vit o1 it +4vstt vt

k
+ i
2 t ,kz(v & 2 x
! K+1 k+1 k+1 k+1 y
1v oec 3p2 " +4p; Pa +} inu:o (25)
2 %c 2 x 2 L

2

From Egs. (22) and (25), and considering the gradients arsherder accurate
approximation, follows

|
0 0 0 koo 0
23v2t N % (v C); vi v, 1 v c p3 p; N

1 v
- = n2=0: 26
x 2 % , x 2"L (26)

Notice that the derivation of Eq. (26) from the velocity etioa (11b) at the inlet,
is similar to the derivation of Eq. (5) from the momentum dtprain the interior
of the computational domain. With Eq. (24), the velocityreation on cell2 can
be expressed as

V9= Aop) + Bopd + Gpf; (27)
where
2 l 3
1 v c 1 t
A,= 4 0k——5 Dy
2 2 x  %c , 2 x( )230/§ X 2
Py
B 1 v c* .
"2 x % ,
— 1 k t .
C:Z_ ﬂ(v )230/’§) 2
3 1 i
D= — — Ky 0 2
2= 51 3 X(V 0)7 oL (28)

The pressure equation (11c) on c&lis

3yt app+pp T 1 vitov
+ —(O L
2t kz(/"% L” |_k
1 CVAREIESY. RV, SE Y St
<0 k 2 3 4
2(/09;5(V 0> > x k k k
1 ¢ 3Pt Hapstt pit
+ (v cC =0:
2( )2 > X

11



Then, with a rst order approximation of the gradients of ggere and velocity
corrections and using Egs. (24) and (27), this becomes:

po+ p3+ pi=; (29)
where

= _ 4+ —(9 4+ 0

51 Az Z(A)i‘Jz(L > X(A)ié(V 0)>

1 t 1
% o)k o)k:

e —_(0 0 0, - .

B> Z(AJ@ L + > X(AJ%(V 0, + > X(V C)s;
=G SO O 0% + Sl (Y O

2 L 2 x 22X °3% x’

_ 3 4t 1o ViV
T o MR

? ? ?
« Svi+4vi vi 1 «_ 3p5 +4p

1,
+ é(ﬁ)%(v 02 5 x E(V 0); 5 x

P (30)

The momentum is corrected on the second cell as
!

0
(5 =% 1+ 2 3+ D),
P2
where%, v; andv? are given by Egs. (21), (22) and (27), respectively.

Now, let us describe how to calculat® andp?. First, v} can be expressed with
pressure corrections similar as was done previouslyfonamely:

1
DivY = Bi(py  pY) ﬂ(v o)fva; (31)
where
! 1
B, = 1 v c* .
T2x % o, "
3 1 i
D;= — —— Ky I
1557 7 x\ dtgp

A possibility for the expression of? in Eq. (31) is to use Eq. (27), which would
be consistent with the treatment of the @&IHowever, numerical experiments (not
shown here) reveal that stability problems may occur with ¢hoice. In this case,
v§ would depend op}, as well ai to pd. This corresponds to a strong downwind
treatment with respect to the ow direction. Alternativeiin expression of? that

12



depends om? andp3 can be derived from the SIMPLE approximation, when the
pressure at the face is interpolated centrally:

t
Vg: 30/57)(032 p(l))i

Then, the LODI velocity and pressure equations lead toicglatinvolvingv and

p?, p3 andp3 quite similar to Egs. (27)—(28) and Egs. (29)—(30). The matu@ on
the celllis corrected according to

0
(%Y5" = 9 1+ 0L (7 +\d):
1

4.2 Outlet treatment

The outlet treatment described in section 3 is now consifjevéh the relaxation
form given in Egs. (12) and (15), rewritten for conveniense a

1= g/lj)tpr ; out = (1 Mr?]ax):

This expression is used on ceNs 1andN.

Prediction On cellsN 1 andN, the predicted density and velocity are given
by Egs. (11a)-(11b). For instance, on déll 1, the density is given by

% 1 W% 1"'0/ﬂ|11+ % K v+ Ok 13V||<11 N 2+ W s
2t 2C N 1 2 X
viek 3o 4 4pf ot s, 1F o P
2c2 N 1 2 X 2C N 1 out L
+ K 3% 1 4% 2*% s v K 3pf . 4PK12+pK13:0
N1 2 X c? N 1 2 X
(32)
and the velocity is given by
Vi1 M tW Y ot P& 1 P
2t 2% L
1 K V1 A otV
+ Z(v+ C
1 vic © 3pk ap 5+ Py
+ = N 1 N 2 N 3=O: (33)
2 %c 2 X

13



Correction The pressure equation (11c), with implicit discretizatior pressure
and velocity reads onceN 1.

k+1 k+1 k+1 k+1
31 AVt W s

3vy 4ok .t R, 1L
o TR PG Jom (v O s
1 3pk+1 4pk+l + pk+1 1 pk+l py
+§(v+ ok [~ 1 2Nx2 N 3+§CK| 1 out———— t =0: (34)

Expressions of§ , andv] , in terms of pressure corrections are needed. First,
since the celIN 2 belongs to the interior of the computational domain (see Eq.

(23)),

2
(%\)ﬁ 2= 3 (pf\)l 2+41=2 pﬁ 2 1=2)°

With central interpolation for the pressure corrections,

0 —

t
VN 2= W(pﬁ 1 PR (35)

Second, the implicit discretization for pressure and vigjaaf Eq. (11b) reads:

3N Y WY ot PN P
2t 2% , L
k+1 k+1 k+1
+ }(V+ 0k 13VN 1 ANt W s

2 2 X
Ck + + +
+ 1' v+ cC 3p|lil 11 4p'|<| 12+ pKI 13 — O (36)
2 %cC 2 X o

From Egs. (33), (35) and (36), with the gradients of cormewiexpressed in a rst
order accurate form,

Vi 1= Ay 1py 1+ By ol o+ Guoapd s (37)
where
2 » 3
1 V+C 1 t
A =4__ou —— (v+ Y .———5 Dy 1
NIT 20k L 2 x %chzx( W3, % N
2 I 3
1 v+ C
By 1= 45— 5 Dy i
N 1 2X %CNl N 1
1 t #
k
= —— (v+¢cC —— Dy 1
Qo1 2X( IN 13% , x N 1
3 1
Dy 1= 5+ =——(V+ O)f
N1T ot (VO
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The pressure equation (34) becomes nally, with the gradienh corrections ex-
pressed in a rst order accurate form,

PR 1t PN 2% PN 3=
where
3 1 1 t
= —+A % v+ oK L+ % v+o)k -
2 1 N 12 X( 0¢KA 1( )N 15 X( Ob:Kn 1( )N 130/& , X

out

1 .1
+ —— (v+ + =

1 1
= Bn 15 X(%ﬁ:Kl (V+Of ﬂ(V"'C)h 1
1 1 t
=G 15 X(%%k\n (V+ON > X(%%k\n (v + O 35, X
3k 1 4L atpPR Y 1, K M1 A 2t Vs
= — +
> 1 2(@9*1 1(VHON 1 2 x

3R 1 4PN ot RN s }CKI PN P
2 X 2N Lot

The momentum onthe cél  1is corrected according to
R
=R 1 1+ (Rt W)
N 1

1
E(V + C)h 1

where%} ,, vy, ;andvy , are given by Egs. (32), (33) and (37), respectively.
Similarly as for the derivation of} ; given in Eq. (37), one has:

0 0 0 0o .
W = AnPy + Buby 1t Gy o

where
2 1,3
1 V+ C
A _ out 5 D
"TO2/L 2 x %e "
2 !k3’
1 V+ C
B = 4_= 5 D
N 2 X %cC N N
Gi=-~(vrof D
2 X N N
3
Dy = — + ——(v+ o)
NES o (V+ oy
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where

3 1 1 1
—+ A 0% +Ck+— +Ck+— out

1 1
Bn > X(%% (Vv + o) ﬂ(V"‘ O

Kk n n 1
_ 3P0 Amt Py %(%ﬁl v+ 0

2 2 2
I IR
N

2kt ) ) ) 2 X
1 k3PN AN it Py 1 NP
— + —
2(V O 2 X 2°'k“l out—
ts X(%m(w okvy (1 Cy):

The momentum on the cell is corrected according to
[

(0]
OO =R 1+ G- (K W)
N

5 Numerical experiments

The test cases presented are chosen to illustrate the tgpalthe semi-implicit
method both at the inlet and the outlet. To explain the roliefrelaxation coef -
cientK, at the outlet, Eq. (12) ismodied th; = Ky(p p’). Similarly, at the
inlet, the coef cient , is introduced such that; = K,(v V) (see Eqg. (16)).

In the following, dissipation and dispersion errors aredugeevaluate the quality
of the solution, when a reference solution is available. Wpley the methodology
proposed by Takacs [10,18]. Say tlggandq, are exact and computed values of a
guantityg under consideration. At a given tintethe mean square error can then
be de ned as

1 X
E2 - = 2
T @ @)
where the sum extends over tRenodes of the grid. Further, we de ne mean values
and variances of the quantities by

1 X

G = ® 5 k=g *

2
e

(& @&)?; &= (@ @ :
Then, the mean square error can be written as

1 X
N
1X 1X
N N

E= 2+ 2+(% ®)° 2COV(k;Q); (38)
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wherecov(g; &) is the covariance of the two signals. The correlation caeht
between the two signals is then

COV(G; &) :

e C

R(G:; &) =
The error (38) can further be written as

E2=( @)?+( e o°+2 el R(GQ): (39)

The different error components can now be identi ed. Théedénce between,
andq is the conservation error as the mean values of the signptegxthe content
of the signals. The difference betweep and . is the dissipation error as the
variances express the energy of the signals with respebetorhean values. The
remaining component was considered by Takacs [18] as tpemi®on error, as
for exact correlation between the signals, the only errat ttan occur is due to
dissipation. This way of denoting the error does not confoampletely with the
now commonly used concept of the modi ed wave number to esgissipation
and dispersion errors. In order to see the relation with tbdirad wave number
concept, a Fourier component may be substituted into (38% then reveals (not
derived here) the rather obvious result that non-dimergimeasures of dissipation
and dispersion errors may be de ned by

q__
Edissipation =2 ¢ ; Edispersion = 1 R(qs; Oc) (40)
e
For exact solutions, the error measures are zero. The egasume for dissipation
becomes unity when all energy dissipates away in the cortipag result. The
error measure for dispersion becomes unity when the ctioelaetween exact
and computational solutions disappears completely.

For the 1D test cases presented below, it will be investiblayemeans of a Fourier
analysis if the behaviour of the dissipation and dispersioars in Egs. (40) is in
agreement with the theoretical properties of the linediatary Iters that corre-
spond to the inlet and outlet treatments.

In all the test cases considered in the following, the uidais with the speci c
heats ratio = 1:4.

5.1 Acoustic inlet oscillation

For this 1D test case, the length of the computational dornsdin= 100 m. The
inlet velocity is speci ed to oscillate about its mean vaMeas

W(t) = V[1+ A, sin2ft )];
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whereV = 0:30886 m s!, A, = 10 2. A, is chosen to be suf ciently small so
that an exact solution can be derived from linear acoudtiegas taken betweeh

to 80 Hzso thatf=f .y , ranges fronb to 80. The other target values required for
the boundary conditions af& = 1:2046 kg m 2 andp’ = 101 300 Pa The initial
conditions are

8
%0/821:2046kg m3;
§v°=Vmsl;

p® = 101 300 Pa

The simulation duration; = 0:55 sis chosen such that no re ected wave can
possibly reach the inlet before the titge The mesh is regular withl = 5 000
cells. At the inlet, we take, = 10* andK ¢= 10 * 3.

In gure 1, the role of the relaxation coef cient, at the outlet is shown through
the total acoustic energy in the pipe, given by (linear attos)s

z, (4 1( 5)
- ) 2 - p) .
Ea= 2/9(V)+2%C(2J

(41)

The convectiveCFL number is chosen & 2. With this value, the acoustiCFL
number is aroundOin the domain reached by the wave and the cut-off frequency at
the outletis aroundHz With , = 1, the level of re ection of the monochromatic
wave of frequency20 Hzis very low, since the total acoustic energy in Eq. (41)
oscillates around a constant value as soon as the acoustcreaches the outlet.

In gure 2, the non-re ective behaviour of the outlet is obstad even if the acoustic
CFL number is signi cantly larger than unity, which was the malrjective of the
present study. Moreover, this result holds even when thesticeenergy is underes-
timated, due to the numerical dissipation that arises wheatousti€CFL number
is very high (see the numerical results of the total acoestergy forCFL,. . = 20
or50in gure 2).

Re ective conditions may be obtained by takihg = L3 in the LODI equations
(11) (seee.g.Ref. [5]), which become then:

@ =0, @= %ts;

so that, according to this approach, no pressure-velocitypking occurs at the
boundary. Another possible approach to obtain re ectiothatoutlet consists in
setting in the LODI equatioris; = ,Ky(p p’)with , 1. Then, there ection

3 With K¢, 1, the density perturbation is allowed to follow the presspeeturbation

in the isentropic way. Then, the inlet condition can be jotered as the imposition of the
entropy.
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Fig. 1. Test: Acoustic inlet oscillatiorc{ Sec. 5.1)f = 20 Hz, A, = 10 2. Time evo-
lution of the total acoustic energgf. Eq. (41). Mach number of the mean owt0 3;
CFLy+¢ =10.

coef cient becomes close to1 (see Eq. (13)) so that the outlet becomes re ective.
Notice that in this case we do not hagy = 0 at the outlet, and the pressure
depends on the velocity, since from Egs. (11b)-(11c),

i@b'+ oKp(p P) = @,

%cC

and thus,
z

t
e %c pKp(t s)@v dS,
pKp 0

p(t) = p’+

under the assumptions thtai= const: andp(0) = p¥. Thus,using , 1inL; =
oKp(p PY) leads to a pressure-velocity coupling on the outlet cellgguires 3-6
are shown dispersion and dissipation errors (see Egs. #8GUnction of time for
varying frequency of the inlet oscillation and for varyingpasticCFL number. The
reference solution is obtained from linear acoustics walfgrt re ection at the
outlet. In particular, the large error level in the re ectgignal for large frequency
and large acousti€FL number is obvious. The conclusion is that for accurate
simulation of the re ected wave, the time-step has to be ehauf ciently small,
with respect to the period of the oscillating signal.
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Fig. 2. Test: Acoustic inlet oscillatioref, Sec. 5.1)f = 20 Hz, A, = 10 2. Time evolution
of the total acoustic energygf. Eq. (41). Mach number of the mean od0 3; p=1.

To getinsightinto this issue, Eq. (A.1b)s written in a rst-order accurate implicit
time discretization form, as

N 1 % K ,
P P = ———(p P+ = " (42)
1+ % ke g 2M (1 + %Ko 1)

where' = Mr2L3=Kp. Then, supposing thaf = p’, Eq. (42) yields

%1
pn = py+ hkl n k,
k=1
where
8 . K
OE i —_— s IR .
_EZM(1+M t)k Ifk_llzy-..,n 1'
hk - S r 2M (43)
-0 else

The sequencéhy) in Eg. (43) can be interpreted as the impulse response of a

4 For equations labelled with A, see the Appendix section. Aidiation indicates non-
dimensional quantities, as de ned in the Appendix section.
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Fig. 3. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure disper-
sion errorcf. Egs. (40). Mach number of the mean o0 3; CFLy+c=5; p =103

discrete lter, whose transfer function is

X1 _ 0
At)= ~ hee ™ t= ANLLILE : (44)
n=1 2MI[(1+ e et bt 1]
The phase shift induced by the lter is obtained from Eq. (44)
8 9
2 ; 2
sin(! t)
| = :
arg (1) arctan,, ol 0 T =3 (45)
+ 2M ¢

Practically, for the values of t and! considered in the present study, the phase
shift induced by the outlet Iter increases linearly withettime-step for a xed
frequency, and increases linearly with the frequency foted time-step (see gure
7). This corresponds to the behaviour of the dispersiorr elseerved in gures 3
and 5. On the other hand, the modulus of the outlet transfetion, related to the
dissipative features of the lter, is obtained from Eq. (44)

% Ky t

if( )= —

0, 2 0, '
2M, 1+ Spfe t o 2 1+ %l t cost t)+1

Practically, for the values of t and! considered in the present stugfy(! )j is
constant and equal to 1 (not shown). Therefore, the behagfdhe dissipation er-
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Fig. 4. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Egs. (40). Mach number of the mean o0 3; CFLy+c=5; p =103

ror observed in gures 4 and 6 is simply the consequence gbttase shift induced
by the outlet treatment.

5.2 1-D acoustic pulse upstream propagation

Let us now consider the proposed inlet treatment with a 1Dd&se in which an
acoustic pulse is propagating upstream in a mean ow with aiMaumber oflO °.
The one-meter long pipe is divided intd = 500 cells. Here we take, = 1 and
K%: 10 4.

With |, =1, the acoustic pulse leaves the computational domain witleoection
(see gure 8). With , = 103, the inlet can be considered as totally re ective (see
gure 9). In gure 9, an interesting point is that the calctdd re ected pulse does
not coincide with the exact solution of the re ected puldgttwould be obtained

if no time difference were introduced by the inlet treatm@ritis time difference
induced by the inlet treatment can be explained by an arsagysiilar to the one
suggested for the outlet in section 5.1. Supposingut@t= vY, the implicit time
discretization of Eq. (A.1a) leads to:

Xl

VSRV he " K
k=1
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Fig. 5. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure disper-
sion errorcf. Egs. (40). Mach number of the mean ow0 3;f =20Hz; =103 For
CFLy+¢c = 0:5andl, results almost coincide.

where =M,L,=( (K,) (see Eq. (A.2a)), and

8
2 e L ifk=1;2:0n L

hk = N 2M, (1+ oMy t) (46)
-0 else

The transfer function associated with the sequence in Ej.i$4

)1 )
Ay = hye " t= VEV ! : : (47)
=1 M1+ ettt 1]
From Eq. (47), the phase shift induced by the lter at thetirdebtained as
8 9
2 in0 1) >
Al) = arct sin( : 48
arg n(!) arctan,, cost 1) Hile ; (48)
and the modulus of the inlet transfer function is
. . K
()= — AL : (49)

2
2M, 1+ et 2 1+ 58+ tcost t)+1

In gures 10 and 11, numerical results are obtained with astamt acousti€FL
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Fig. 6. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Time evolution of the pressure dissipa-
tion error,cf. Egs. (40). Mach number of the mean ow0 *;f =20Hz; , =103 For
CFLy+c = 0:5andl, the results coincide with the time axis.

number. As

1 1 v 1 vt
P + — = + - = + -
CFLy+c 1 M CFL, 1 M x 1 M ”

we can consider that, at low Mach numbeCFKL,. . is constant, then (considering
thatM, = - M):
t M, = const: = (50)

For the settings considered in this study, the modulus ointlle¢ transfer function,
written from Egs. (49) and (50) as

if)i= Ly :
2M, (1+ —<Kv)2 21+ Ke)cos(! M ,)+1

is practically constant for each value of the reference Magimber on the fre-
guency band considered in gure 12, and equal to one (not Bhd®o, as for the
outlet in section 5.1, the dissipation error shown in gufei4 the consequence of
the phase shift due to the inlet treatment.
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Fig. 7. Test: Acoustic inlet oscillatiorcf, Sec. 5.1). Argument of the Iter transfer function
at the outletcf. Eq. (45). Mach number of the mean o0 3 ; CFLy+c=5; =103

From Egs. (48) and (50), the phase shift at the inlet is wride

8 9
2 : =
sin( M )
arg A1) = arctan : 51
9 fiC) T p— 1
2

Eg. (51) with , = 103 is illustrated in gure 12. The phase shift decreases with
the Mach number for any given frequerfcyMoreover, the phase shift level be-
comes practically independent of the frequency as the Maotber is the smallest
considered]0 ’. It is shown in gure 10 that, when the Mach numbdr of the
background ow is small with respect to unity, the theoratitimit 0 of arg(fi (! ))
(see Eq. (51)) is not achieved in practice. Moreover, thpatson error is slightly
larger for the smallest values of the background ow Mach bem The reason
of these two features is that, in the previous discussiantithe discretization is
solely accounted for, and not the space discretizatiors iEleon rmed by varying
the time-step, as illustrated in gure 13. Notice that thenauical results of the
dispersion error are very close in gures 10 and 13 if the $esélvalues oM and
CFL,+ . are considered. As shown in gure 14, the dispersion ernud, lzence the

5 This is not in contradiction with the reference Mach numbedependency of
RV (! cutof)j @ndarg(RM: . (! curoff)) Observed in section A, since the linear lters
associated with the transfer functiohsandRY" _ are different. In particular, the Iter

associated witfi is causal and the Iter associated wiig}:.. is anti-causal.
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Fig. 8. Test: 1-D acoustic pulse upstream propagatfrsec. 5.2). = 1. Mach number
of the mean ow:10 °; CFL+. = 20. Exact solution (linear acoustics):
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Fig. 9. Test: 1-D acoustic pulse upstream propagat@dnSec. 5.2). , = 102. Mach
number of the mean ow10 °; CFL+. = 20. Exact solution (linear acoustics): Exact
solution of re ected wave: —.
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Fig. 10. Test: 1-D acoustic pulse upstream propagatichh $ec. 5.2). , = 1083,
CFLy+c=5.ForM =10 %and10 7, results coincide.
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Fig. 11. Test: 1-D acoustic pulse upstream propagatich $ec. 5.2). , = 1083,
CFLy+c=5.ForM =10 %and10 7, results coincide.
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Fig. 12. Test: 1-D acoustic pulse upstream propagatbrgéc. 5.2). Argument of the Iter
transfer function at the inletf. Eq. (51).CFLy+c=5; = 105.

0.1

CF v — 0] 5 {7] T T T T T
pli=1——
o Y p—
| CFL,,.=10-
S 0.08 CFLVIE =20 —mmm
o s s
c
2 s s s s s s s s
Q
§
o
e : : : : 4 : : :
8 ' ' ' ' ' ' ' H
o
Q H H H H H H H H
()0 S S | ——. W_—_—. — —
0 == =1 = i ] ] ] ] ] ]
0 0.5 1 15 2 2.5 3 3.5 4 4.5

Time (ms)

Fig. 13. Test: 1-D acoustic pulse upstream propagatidnSec. 5.2). , = 103, Mach
number of the mean owi0 °. ForCFL,+. = 0:5andl, results coincide.

29



0.2 T T T T T T T T

N =500 —— |
N = 1000 -+ | |
N = 2000 - RS
S 015} i -
o f——
c i T ——
2 g : : -
E-) "" : :
% l: : :
2 o1f o -
® P
3 ./
2]
N :
2 H
& |

0.05

2.5 3 3.5 4 4.5
Time (ms)

Fig. 14. Test: 1-D acoustic pulse upstream propagatidnSec. 5.2). , = 103, Mach
number of the mean owi0 ®;CFLy+.=5.

phase shift due to the lIter, is primarily related to the I&mgf the boundary cells.
5.3 2-D acoustic pulse propagation

Finally, a radially propagating two-dimensional Gausssaaped acoustic pulse in
a uniform low Mach number ow is considered. The computasibdomain is a
square of side length m, divided into500 500cells. The center of the pulse is
located atxp = 0:5 mandy, = 0:5 matt = 0. The pulse is generated at= 0
by a pressure perturbatigrp)® and a density pertubatiqr?9® of a uniform ow
which corresponds tég = 1:2046 kg m 3, up = Vo = 0:30886 102 m s ! and
Po = 101 300 Pa Entropy uctuations are set to zero by imposingy° = ( p)°=c

Whereco =  po=%. The initial conditions are

§°/8-%+(°@°

§ VO = vo;

p°= po+( p)°;
where the initial pressure pertubation is given by

(p)’= pexpt  [(x x0)?+(y vo)lg;
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with , =200 Paand =1=0:05¢ m 2.

@t=0 (b)t=1:0ms ©t=1:2ms

(dt=1:5ms (e)t=1:8ms Ht=2:1ms

Fig. 15. Test: 2-D acoustic pulse propagatioh $ec. 5.3). Time evolution of the pressure
perturbation eld (Pa) in a square of one-meter long sidéetideft and bottom sides of
the square; outlet: right and top sides of the square. Valuekeomean ow Mach num-
ber (equal in both horizontal and vertical direction8)10 °. Regular cartesian mesh,
500 500cells. Value of the acousti€FL number:20. Relaxation coef cients: , = 1
andKo, = 10 4 (inlet); p = 1 (outlet). The black circle indicates the radial propaga-
tion (H the black disc located at the center of the pulse¢ at 0, with radial velocity

Co = po=% = 343:121 nFs.

In gure 15, the radial velocity of the pressure perturbatie in good agreement
with the reference value calculated with the density and pressure of the uniform
background ow, which con rms the accuracy of the methodatésed in section 2.
No signi cant re ection of acoustic waves is observed, apensted with the chosen
values of the re ection coef cients, since, = = 1.

To assess the importance of the numerical dissipation dine foroposed SIMPLE-
type algorithm in the results shown in gure 15, the previsimulation is reconsid-
ered with values of re ection coef cients much larger thamty. Numerical results
are shown in gure 16, right, next to the ones of Fig. 15 (f),ie¢hare displayed
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Fig. 16. Test: 2-D acoustic pulse propagatioh $ec. 5.3)t = 2:1 ms Left: Computation
parameters identical to those of Fig. 15 (f). Righg:= 10 and = 103,

again in Fig. 16, left, with a common color map. As expeéteit is observed that
the pressure perturbation keeps its sign after re ectiotheninlet line, unlike the
re ected pressure perturbation on the outlet line, whoge shanges after re ec-
tion. The net visible difference between the two pressusgridutions shown in
Fig. 16 demonstrates that the suggested boundary treasmesgeds in this multi-
dimensional test case, with an acoustiEL number signi cantly larger than unity.

6 Conclusion

In this study, a partially re ective LODI-based treatmerittbe inlet and outlet
boundaries was considered for the simulation of inviscidiso A semi-implicit
solution of the boundary equations was proposed, in contibmavith the algo-
rithm used in the interior of the computational domain. Thespure-velocity cou-
pling employed to solve the boundary equations is desigmedric the pressure-
velocity coupling used in the interior of the computatiodamain. The numerical
experiments, carried out with a time-step that corresptmédas acousti€CFL num-
ber signi cantly larger than unity, show that re ective oon-re ective properties
of the boundaries, well known in the framework of explicihemes, are recovered
with the proposed semi-implicit treatment.

6 For example, see Fig. 9 bottom, for a similar feature in 1D.
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A Appendix. Linear relaxation for characteristic-based boundary conditions:
Low Mach number aspects

The suitability of the approach of linear relaxation fornr the partially non-
re ective treatment at the inlet and at the outlet is addedda this Appendix sec-
tion. Moreover, the link with classic boundary treatmemtsihcompressible ows
is established by means of an asymptotic continuous asaliere two length
scales, convective and acoustic, are distinguished(geklein [4], Meister [9] or
Prosser [14]).

Reference pressuge and densityp are introduced, along with a reference length
I, and a reference velocity, which are thought of as inertiqll guantities. The Mach
number representative of the ow is then de nedMs = v,= p,=% Any dimen-
sionless quantity will be written asThe LODI equations (11) can now be rewritten
in dimensionless form:

%
@+ M r%(l—l"' L3)+ L, =0;

@/+%(L3 L,)=0; (A.1a)
oe
@p"'MrE(Ll"' L3)=0; (A.1b)
where
!
c 11
L= v M_r M—r%@p Qv ; (A.2a)
Lo=v @% 2@ ; (A.2b)
!
c 11 _
Ls= v+ M_r M—r%@p+ @v : (A.2c)

The outlet re ection coef cient reads now

_r
1 M2

%K p

Ritiet (1) =

outlet

and the dimensionless cut-off frequency,

(1 Mr%ax)cmin.
4AM,L '

f cut-off =

Thus, the modulus and argumentRIf:,., (! cutor) are

1 1
. M - _ )
JRourtlet (! cut-off)] = F - F R - o1
1+ Moo 1+ 4 Mésdemn
%K p %K pL
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!
2Mr ! cut-off

arg(RMse: (! cutof)) = arctan =<
p

( )

(1 M nzﬁax)cmin
96K ,L

arctan

These expressions do not depend on the Mach nuMbdsut exhibit only a weak
dependence oNl 5 in the limitM ! 0. In particular, the ratio of the re ected
acoustic energy, fed back into the domain, to the incidentisiic energy, does
not depend on the Mach numbds. It is easily checked that the same observation
holds for the inlet treatment.

To explain the link between the charateristic-based amprpaeviously described
and a classic approach for the boundary treatment, we enapl@gymptotic con-
tinuous analysis, where two length scales, convective endsdic, are distinguished.
A variable relevant to large scale acoustic uctuationsesnéd as

=M,Xx:

Then, let us suppose that the pressure variable can be eeghamderM, 1, as

X
pOtM) = M"pM(x )+ oMN) 5 N =0;1;2
n=0

with similar expansions for the densigand the velocity.

Outlet From Eqgs. (10a) and (12)-(15), the linear relaxation esgion of the
non-re ective condition at the outlet reads in dimensi@siéorm

1 Mia

L, =
! M, %%

(P P): (A.3)

After that the expansions in the power of the Mach number ast#uted into the
expressions (A.2a) and (A.3) bf;, one obtains:

0
L= P av® VO + @@ + @ud)
r

e
(@00 + @)+ V@ + of1) (Ad)

with

M !
u !
(0) 1 L o
0 = t P W= 20 P

W P N
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and, at the other hand,

( .
1 M2 1 1h %" i
( L 2 vz®? P g (07 g+ Y

! # )
w Z o o)
(0) & i (A (2) .

L1=

Collecting coef cients of order 2,

p@ = pv: (A.6)

Let us suppose that the target presqures constant in time, for instance as a far-
eld pressure. Then, sinc,p©@ + p© @v® =0 (see Ref. [4]),

@v® =0:

Finally, from Eq. (A.6) and the classical thermodynamiatiein for a divariant
gas:

_ _dp d%
ds—cVF CPTA)

one has, on isentropic assumption,
@% =0:

The previous manipulations can be summarized as followsp&se that the target
pressure has a constant value. Then, as the representatolerimbeM, goes to
zero, the outlet condition resulting from the linear rekxa setting,L; = (1

M2 ) (p p)=(%L), leads asymptotically to the ‘classical' outlet conditiimn the
zeroth-order primitive variables, which consists of theawsition of the pressure
and the extrapolation of the density and the velocity in tvective space scale.

Returning now to Egs. (A.4) and (A.5), the ordet yields
p® =0: (A.7)

As the rst-order pressure is identi ed as the acoustic osee(Ref. [4]), Eq. (A.7)
corresponds to the removal of the acoustic incoming waveeabtitlet. However,
the proper characteristic-based non-re ective outletditbon for acoustic waves
should be

1

(0) 1 =0-
N S IOAC

In other words, as the representative Mach number goes @ ther non-re ective
treatment of acoustic waves degenerates asymptoticadly etbsorbing treatment
which consists in setting the acoustic pressure to zero.
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Inlet. Returning to the two length scales asymptotic expansginse

c©®
Ly= M—@V(O) + vO @V(O) + C(O)(@V(O) + @V(l))
r

+ o (@0 + @)+ V@V + o1) (A8)
the identi cation of the expressions (A.2c) and

1 Mza)

L. =
3 M, L

(v v

yields, at order 1.
C(O) @V(O) = K V(V(O) Vy)
This equation holds on an interval in which the inlet liesg at 0. On this interval,

vO = vy
as function ofx. SincevY is supposed to be constant in time,

@© =0:

From the zeroth-order momentum equation obtained throhglconvective and
acoustic space scales low Mach number asymptotic anatyséshas, after sepa-
ration of convective and acoustic space scales (we refet, 8 for details on this

scales separation technique):

@@ = @p® W
from which we deduce:
@p® =0:

Thus, the acoustic pressure is extrapolated at the inlé¢th, an extrapolation in
the large acoustic length scale. If only the space variatadrthe long wavelength
acoustic waves are retained in expression (A.8), the nautree equationLz; =0
reduces at order zero to

@V(O) + @p(l) =0:

(%)@

Since@p® = 0, the non-re ective equation of acoustic waves becomesatriv
and the outcoming upstream propagating acoustic wavesate gero. Thus, at
the inlet, the Itering treatment of acoustic waves degeabes into an absorbing
treatment, based on the extrapolation of the acoustic yresshis is similar to the
observations presented previously for the outlet treatmen
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