Skip to Main content Skip to Navigation
Journal articles

Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment

Abstract : Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and ertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic ources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and nterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has ed to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical arameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the ioremediation and site management of nonferrous metal (loid) tailings.
Complete list of metadatas

https://hal-univ-pau.archives-ouvertes.fr/hal-02282722
Contributor : Sylvie Blanc <>
Submitted on : Tuesday, September 10, 2019 - 11:15:40 AM
Last modification on : Thursday, March 5, 2020 - 7:17:47 PM

Identifiers

Collections

Citation

Jianli Liu, Jun Yao, Geoffrey Sunahara, Fei Wang, Zifu Li, et al.. Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment. Environmental Science and Pollution Research, Springer Verlag, 2019, 26 (24), pp.24806-24818. ⟨10.1007/s11356-019-05092-3⟩. ⟨hal-02282722⟩

Share

Metrics

Record views

34