B. Carroll, Editing for Digital Media, Writing and Editing for Digital Media, pp.29-58, 2017.

F. John, Atkins: Conceptualization, Supervision, Writing -original draft. References

V. M. Labunskyy, D. L. Hatfield, and V. N. Gladyshev, Selenoproteins: Molecular Pathways and Physiological Roles, Physiological Reviews, vol.94, issue.3, pp.739-777, 2014.

M. J. Maroney and R. J. Hondal, Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids, Free Radical Biology and Medicine, vol.127, pp.228-237, 2018.

I. Ingold, C. Berndt, S. Schmitt, S. Doll, G. Poschmann et al., Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis, Cell, vol.172, issue.3, pp.409-422.e21, 2018.

R. F. Burk and K. E. Hill, Regulation of Selenium Metabolism and Transport, Annual Review of Nutrition, vol.35, issue.1, pp.109-134, 2015.

U. Schweizer and N. Fradejas?villar, Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism, The FASEB Journal, vol.30, issue.11, pp.3669-3681, 2016.

Y. M. Xia, K. E. Hill, and R. F. Burk, Biochemical Studies of a Selenium-Deficient Population in China: Measurement of Selenium, Glutathione Peroxidase and Other Oxidant Defense Indices in Blood, The Journal of Nutrition, vol.119, issue.9, pp.1318-1326, 1989.

M. L. Jackson, Selenium: Geochemical distribution and associations with human heart and cancer death rates and longevity in China and the United States, Biological Trace Element Research, vol.15, issue.1, pp.13-21, 1988.

J. A. Long, R. R. Large, M. S. Lee, M. J. Benton, L. V. Danyushevsky et al., Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events, Gondwana Research, vol.36, pp.209-218, 2016.

A. B?-ock, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers et al., Selenocysteine: the 21st amino acid, Mol. Microbiol, vol.5, p.19, 1991.

J. F. Atkins and R. F. Gesteland, The twenty-first amino acid, Nature, vol.407, issue.6803, pp.463-464, 2000.

T. Mukai, M. Englert, H. J. Tripp, C. Miller, N. N. Ivanova et al., Facile Recoding of Selenocysteine in Nature, Angewandte Chemie International Edition, vol.55, issue.17, pp.5337-5341, 2016.

M. J. Berry, L. Banu, Y. Chen, S. J. Mandel, J. D. Kieffer et al., Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3? untranslated region, Nature, vol.353, issue.6341, pp.273-276, 1991.

M. J. Berry, L. Banu, J. W. Harney, and P. R. Larsen, Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons., The EMBO Journal, vol.12, issue.8, pp.3315-3322, 1993.

R. Walczak, P. Carbon, and A. Krol, Non-Watson-Crick Base Pairing in RNA. Quantum Chemical Analysis of the cis Watson-Crick/Sugar Edge Base Pair Family, RNA, vol.4, p.25

E. Grundner-culemann, G. W. Martin, J. W. Harney, and M. J. Berry, Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes, RNA, vol.5, issue.5, pp.625-635, 1999.

P. R. Copeland, J. E. Fletcher, B. A. Carlson, D. L. Hatfield, and D. M. Driscoll, A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs, The EMBO Journal, vol.19, issue.2, pp.306-314, 2000.

L. Chavatte, B. A. Brown, and D. M. Driscoll, Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes, Nature Structural & Molecular Biology, vol.12, issue.5, pp.408-416, 2005.

J. L. Bubenik, A. C. Miniard, and D. M. Driscoll, Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2, RNA Biology, vol.11, issue.11, pp.1402-1413, 2014.

D. Fagegaltier, N. Hubert, K. Yamada, T. Mizutani, P. Carbon et al., Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation, The EMBO Journal, vol.19, issue.17, pp.4796-4805, 2000.

R. M. Tujebajeva, P. R. Copeland, X. M. Xu, B. A. Carlson, J. W. Harney et al., Decoding apparatus for eukaryotic selenocysteine insertion, EMBO Rep, vol.1, pp.158-163, 2000.

A. M. Zavacki, J. B. Mansell, M. Chung, B. Klimovitsky, J. W. Harney et al., Coupled tRNASec-Dependent Assembly of the Selenocysteine Decoding Apparatus, Molecular Cell, vol.11, issue.3, pp.773-781, 2003.

J. Donovan, K. Caban, R. Ranaweera, J. N. Gonzalez-flores, and P. R. Copeland, A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment, Journal of Biological Chemistry, vol.283, issue.50, pp.35129-35139, 2008.

B. A. Carlson, M. Yoo, P. A. Tsuji, V. N. Gladyshev, and D. L. Hatfield, Mouse Models Targeting Selenocysteine tRNA Expression for Elucidating the Role of Selenoproteins in Health and Development, Molecules, vol.14, issue.9, pp.3509-3527, 2009.

M. E. Budiman, J. L. Bubenik, A. C. Miniard, L. M. Middleton, C. A. Gerber et al., Eukaryotic Initiation Factor 4a3 Is a Selenium-Regulated RNA-Binding Protein that Selectively Inhibits Selenocysteine Incorporation, Molecular Cell, vol.35, issue.4, pp.479-489, 2009.

A. C. Miniard, L. M. Middleton, M. E. Budiman, C. A. Gerber, and D. M. Driscoll, Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression, Nucleic Acids Research, vol.38, issue.14, pp.4807-4820, 2010.

M. T. Howard, G. Aggarwal, C. B. Anderson, S. Khatri, K. M. Flanigan et al., Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons, The EMBO Journal, vol.24, issue.8, pp.1596-1607, 2005.

M. T. Howard, M. W. Moyle, G. Aggarwal, B. A. Carlson, and C. B. Anderson, A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec, RNA, vol.13, issue.6, pp.912-920, 2007.

B. Maiti, S. Arbogast, V. Allamand, M. W. Moyle, C. B. Anderson et al., A mutation in theSEPN1selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads toSEPN1-related myopathy, Human Mutation, vol.30, issue.3, pp.411-416, 2009.

J. L. Bubenik, A. C. Miniard, and D. M. Driscoll, Alternative Transcripts and 3?UTR Elements Govern the Incorporation of Selenocysteine into Selenoprotein S, PLoS ONE, vol.8, issue.4, p.e62102, 2013.

V. N. Gladyshev, E. S. Arnér, M. J. Berry, R. Brigelius-flohé, E. A. Bruford et al., Selenoprotein Gene Nomenclature, Journal of Biological Chemistry, vol.291, issue.46, pp.24036-24040, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01882353

G. V. Kryukov and V. N. Gladyshev, Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues, Genes to Cells, vol.5, issue.12, pp.1049-1060, 2000.

S. Kurokawa, S. Eriksson, K. L. Rose, S. Wu, A. K. Motley et al., Sepp1UF forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1, Free Radical Biology and Medicine, vol.69, pp.67-76, 2014.

A. V. Lobanov, D. L. Hatfield, and V. N. Gladyshev, Reduced reliance on the trace element selenium during evolution of mammals, Genome Biology, vol.9, issue.3, p.R62, 2008.

K. E. Hill, R. S. Lloyd, and R. F. Burk, Conserved features of selenoprotein P cDNA, Biochemical Society Transactions, vol.21, issue.4, pp.832-835, 1993.

S. Himeno, H. S. Chittum, and R. F. Burk, Isoforms of Selenoprotein P in Rat Plasma, Journal of Biological Chemistry, vol.271, issue.26, pp.15769-15775, 1996.

S. Ma, K. E. Hill, R. M. Caprioli, and R. F. Burk, Mass Spectrometric Characterization of Full-length Rat Selenoprotein P and Three Isoforms Shortened at the C Terminus, Journal of Biological Chemistry, vol.277, issue.15, pp.12749-12754, 2002.

S. Wu, M. Mariotti, D. Santesmasses, K. E. Hill, J. Baclaocos et al., Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements, Open Biology, vol.6, issue.11, p.160241, 2016.

A. V. Lobanov, D. E. Fomenko, Y. Zhang, A. Sengupta, D. L. Hatfield et al., Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life, Genome Biology, vol.8, issue.9, p.R198, 2007.

L. Jiang, J. Ni, and Q. Liu, Evolution of selenoproteins in the metazoan, BMC Genomics, vol.13, issue.1, p.446, 2012.

K. E. Hill, R. S. Lloyd, and R. F. Burk, Conserved nucleotide sequences in the open reading frame and 3' untranslated region of selenoprotein P mRNA., Proceedings of the National Academy of Sciences, vol.90, issue.2, pp.537-541, 1993.

M. Mariotti, S. Shetty, L. Baird, S. Wu, G. Loughran et al., Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P, Nucleic Acids Research, vol.45, issue.22, pp.13004-13015, 2017.

C. E. Chapple and R. Guigó, Correction: Relaxation of Selective Constraints Causes Independent Selenoprotein Extinction in Insect Genomes, PLoS ONE, vol.4, issue.7, 2009.

M. Mariotti, D. Santesmasses, S. Capella-gutierrez, A. Mateo, C. Arnan et al., Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization, Genome Research, vol.25, issue.9, pp.1256-1267, 2015.

M. Mariotti, G. Salinas, T. Gabald-on, and V. N. Gladyshev, Utilization of selenocysteine in early-branching fungal phyla, Nat. Microbiol, 2019.

M. Mariotti, P. G. Ridge, Y. Zhang, A. V. Lobanov, T. H. Pringle et al., Composition and evolution of the vertebrate and mammalian selenoproteomes, PLoS One, vol.7, 2012.

P. Dehal and J. L. Boore, Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate, PLoS Biology, vol.3, issue.10, p.e314, 2005.

M. Mariotti, Selenocysteine extinctions in insects, vol.4, pp.113-140, 2016.

A. Mehta, C. M. Rebsch, S. A. Kinzy, J. E. Fletcher, and P. R. Copeland, Efficiency of Mammalian Selenocysteine Incorporation, Journal of Biological Chemistry, vol.279, issue.36, pp.37852-37859, 2004.

L. Latrèche, O. Jean-jean, D. M. Driscoll, and L. Chavatte, Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine, Nucleic Acids Research, vol.37, issue.17, pp.5868-5880, 2009.

S. P. Shetty, R. Shah, and P. R. Copeland, Regulation of Selenocysteine Incorporation into the Selenium Transport Protein, Selenoprotein P, Journal of Biological Chemistry, vol.289, issue.36, pp.25317-25326, 2014.

S. P. Shetty, R. Sturts, M. Vetick, and P. R. Copeland, Processive incorporation of multiple selenocysteine residues is driven by a novel feature of the selenocysteine insertion sequence, Journal of Biological Chemistry, vol.293, issue.50, pp.19377-19386, 2018.

D. Salvi and P. Mariottini, Molecular taxonomy in 2D: a novel ITS2 rRNA sequence-structure approach guides the description of the oysters' subfamily Saccostreinae and the genusMagallana(Bivalvia: Ostreidae), Zoological Journal of the Linnean Society, vol.179, pp.263-276, 2016.

M. Iacono, F. Mignone, and G. Pesole, uAUG and uORFs in human and rodent 5?untranslated mRNAs, Gene, vol.349, issue.2, pp.97-105, 2005.

A. Churbanov, I. B. Rogozin, V. N. Babenko, H. Ali, and E. V. Koonin, Evolutionary conservation suggests a regulatory function of AUG triplets in 5'-UTRs of eukaryotic genes, Nucleic Acids Research, vol.33, issue.17, pp.5512-5520, 2005.

A. G. Hinnebusch, I. P. Ivanov, and N. Sonenberg, Translational control by 5'-untranslated regions of eukaryotic mRNAs, Science, vol.352, issue.6292, pp.1413-1416, 2016.

Z. Stoytcheva, R. M. Tujebajeva, J. W. Harney, and M. J. Berry, Efficient Incorporation of Multiple Selenocysteines Involves an Inefficient Decoding Step Serving as a Potential Translational Checkpoint and RibosomeBottleneck, Molecular and Cellular Biology, vol.26, issue.24, pp.9177-9184, 2006.

S. M. Fixsen and M. T. Howard, Processive Selenocysteine Incorporation during Synthesis of Eukaryotic Selenoproteins, Journal of Molecular Biology, vol.399, issue.3, pp.385-396, 2010.

J. Donovan and P. R. Copeland, Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins, BMC Evolutionary Biology, vol.9, issue.1, p.229, 2009.

J. Donovan and P. R. Copeland, Selenocysteine Insertion Sequence Binding Protein 2L Is Implicated as a Novel Post-Transcriptional Regulator of Selenoprotein Expression, PLoS ONE, vol.7, issue.4, p.e35581, 2012.

G. Zhang, X. Fang, X. Guo, L. Li, R. Luo et al., The oyster genome reveals stress adaptation and complexity of shell formation, Nature, vol.490, issue.7418, pp.49-54, 2012.

P. Qu, G. Ni, J. Miao, Q. Wang, C. E. Wang et al., The oyster genome reveals stress adaptation and complexity of shell formation, Nature, vol.490, 2012.

G. Riviere, C. Klopp, N. Ibouniyamine, A. Huvet, P. Boudry et al., GigaTON: an extensive publicly searchable database providing a new reference transcriptome in the pacific oyster Crassostrea gigas, BMC Bioinformatics, vol.16, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258440

Y. Zhang, D. E. Fomenko, and V. N. Gladyshev, The microbial selenoproteome of the Sargasso Sea, Genome Biol, vol.6, 2005.

C. J. Gobler, A. V. Lobanov, Y. Tang, A. A. Turanov, Y. Zhang et al.,

V. N. Grigoriev and . Gladyshev, The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens, ISME J, vol.7, pp.1333-1376, 2013.

P. S. Rainbow and B. D. Smith, Trophic transfer of trace metals: subcellular compartmentalisation in bivalve prey and comparative assimilation efficiencies of two invertebrate predators, J. Exp. Mar. Bio. Ecol, vol.390, pp.143-148, 2010.

D. Umysova, M. Vitova, I. Douskova, K. Bisova, M. Hlavova et al., Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda, BMC Plant Biology, vol.9, issue.1, p.58, 2009.

X. Sun, Y. Zhong, Z. Huang, and Y. Yang, Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments, PLoS One, vol.9, p.112270, 2014.

M. T. Howard, B. A. Carlson, C. B. Anderson, and D. L. Hatfield, Translational redefinition of UGA codons is regulated by selenium availability, J. Biol. Chem, vol.288, 2013.

P. A. Tsuji, B. A. Carlson, C. B. Anderson, H. E. Seifried, D. L. Hatfield et al., Dietary selenium levels affect selenoprotein expression and support the interferon-g and IL-6 immune response pathways in mice, Nutrients, vol.7, pp.6529-6578, 2015.

N. Fradejas-villar, S. Seeher, C. B. Anderson, M. Doengi, B. A. Carlson et al., The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay, Nucleic Acids Research, vol.45, issue.7, pp.4094-4107, 2016.

A. A. Turanov, R. A. Everley, S. Hybsier, K. Renko, L. Schomburg et al., Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine, PLOS ONE, vol.10, issue.10, p.e0140353, 2015.

Y. Xia, K. E. Hill, D. W. Byrne, J. Xu, and R. F. Burk, Effectiveness of selenium supplements in a low-selenium area of China, The American Journal of Clinical Nutrition, vol.81, issue.4, pp.829-834, 2005.

A. P. Kipp, D. Strohm, R. Brigelius-flohé, L. Schomburg, A. Bechthold et al., Revised reference values for selenium intake, Journal of Trace Elements in Medicine and Biology, vol.32, pp.195-199, 2015.

G. K. Sarangi, F. Romagné, and S. Castellano, Distinct Patterns of Selection in Selenium-Dependent Genes between Land and Aquatic Vertebrates, Molecular Biology and Evolution, vol.35, issue.7, pp.1744-1756, 2018.

M. A. Bryszewska and A. Måge, Determination of selenium and its compounds in marine organisms, Journal of Trace Elements in Medicine and Biology, vol.29, pp.91-98, 2015.

P. M. Moriarty, C. C. Reddy, and L. E. Maquat, Selenium Deficiency Reduces the Abundance of mRNA for Se-Dependent Glutathione Peroxidase 1 by a UGA-Dependent Mechanism Likely To Be Nonsense Codon-Mediated Decay of Cytoplasmic mRNA, Molecular and Cellular Biology, vol.18, issue.5, pp.2932-2939, 1998.

R. A. Sunde and A. M. Raines, Selenium Regulation of the Selenoprotein and Nonselenoprotein Transcriptomes in Rodents, Advances in Nutrition, vol.2, issue.2, pp.138-150, 2011.

Q. P. Gu, W. Ream, and P. D. Whanger, Selenoprotein W gene regulation by selenium in L8 cells, BioMetals, vol.15, issue.4, pp.411-420, 2002.

H. A. Spiller, Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity, Clinical Toxicology, vol.56, issue.5, pp.313-326, 2017.

L. H. Hedge, N. A. Knott, and E. L. Johnston, Dredging related metal bioaccumulation in oysters, Marine Pollution Bulletin, vol.58, issue.6, pp.832-840, 2009.

L. Schomburg and U. Schweizer, Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1453-1462, 2009.

S. Kurokawa and M. J. Berry, Selenium. Role of the Essential Metalloid in Health, Metal Ions in Life Sciences, vol.13, pp.499-534, 2013.

J. Jagodnik, C. Chiaruttini, and M. Guillier, Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs, Molecular Cell, vol.68, issue.1, pp.158-170.e3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02321962

S. Seeher and U. Schweizer, Targeted deletion of Secisbp2 reduces, but does not abrogate, selenoprotein expression and leads to striatal interneuron loss, Free Radical Biology and Medicine, vol.75, p.S9, 2014.

A. A. Turanov, A. V. Lobanov, D. E. Fomenko, H. G. Morrison, M. L. Sogin et al., Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon, Science, vol.323, issue.5911, pp.259-261, 2009.

S. P. Shetty and P. R. Copeland, The Selenium Transport Protein, Selenoprotein P, Requires Coding Sequence Determinants to Promote Efficient Selenocysteine Incorporation, Journal of Molecular Biology, vol.430, issue.24, pp.5217-5232, 2018.

M. E. Budiman, J. L. Bubenik, and D. M. Driscoll, Identification of a signature motif for the eIF4a3?SECIS interaction, Nucleic Acids Research, vol.39, issue.17, pp.7730-7739, 2011.

J. F. Atkins, A. Bock, S. Matsufuji, and R. F. Gesteland, Dynamics of the genetic code, pp.637-673, 1999.

M. Mariotti and R. Guigo, Selenoprofiles: profile-based scanning of eukaryotic genome sequences for selenoprotein genes, Bioinformatics, vol.26, issue.21, pp.2656-2663, 2010.

K. M. Kocot, T. H. Struck, J. Merkel, D. S. Waits, C. Todt et al., Phylogenomics of Lophotrochozoa with Consideration of Systematic Error, Systematic Biology, vol.66, p.syw079, 2016.

F. Sievers and D. G. Higgins, Clustal Omega for making accurate alignments of many protein sequences, Protein Science, vol.27, issue.1, pp.135-145, 2017.

J. Huerta-cepas, F. Serra, and P. Bork, ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data, Molecular Biology and Evolution, vol.33, issue.6, pp.1635-1638, 2016.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, issue.9, pp.1312-1313, 2014.

M. Mariotti, A. V. Lobanov, R. Guigo, and V. N. Gladyshev, SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins, Nucleic Acids Research, vol.41, issue.15, pp.e149-e149, 2013.

A. Jouaux, C. Heude-berthelin, P. Sourdaine, M. Mathieu, and K. Kellner, Gametogenic stages in triploid oysters Crassostrea gigas: Irregular locking of gonial proliferation and subsequent reproductive effort, Journal of Experimental Marine Biology and Ecology, vol.395, issue.1-2, pp.162-170, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02296532

Q. Li, W. Liu, K. Shirasu, W. Chen, and S. Jiang, Reproductive cycle and biochemical composition of the Zhe oyster Crassostrea plicatula Gmelin in an eastern coastal bay of China, Aquaculture, vol.261, issue.2, pp.752-759, 2006.

Y. Ogra, K. Ishiwata, J. Ruiz-encinar, R. ?obi?ski, and K. T. Suzuki, Speciation of selenium in selenium-enriched shiitake mushroom, Lentinula edodes, Analytical and Bioanalytical Chemistry, vol.379, issue.5-6, pp.861-866, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01560729

N. T. Ingolia, G. A. Brar, S. Rouskin, A. M. Mcgeachy, and J. S. Weissman, The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments, Nature Protocols, vol.7, issue.8, pp.1534-1550, 2012.

A. M. Michel, J. P. Mullan, V. Velayudhan, P. B. O'connor, C. A. Donohue et al., RiboGalaxy: A browser based platform for the alignment, analysis and visualization of ribosome profiling data, RNA Biology, vol.13, issue.3, pp.316-319, 2016.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.R25, 2009.

S. J. Kiniry, P. B. O?connor, A. M. Michel, and P. V. Baranov, Trips-Viz: a transcriptome browser for exploring Ribo-Seq data, Nucleic Acids Research, vol.47, issue.D1, pp.D847-D852, 2018.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nature Protocols, vol.7, issue.3, pp.562-578, 2012.

I. Antonov, A. Coakley, J. F. Atkins, P. V. Baranov, and M. Borodovsky, Identification of the nature of reading frame transitions observed in prokaryotic genomes, Nucleic Acids Research, vol.41, issue.13, pp.6514-6530, 2013.

N. Gupta, L. W. Demong, S. Banda, and P. R. Copeland, Reconstitution of Selenocysteine Incorporation Reveals Intrinsic Regulation by SECIS Elements, Journal of Molecular Biology, vol.425, issue.14, pp.2415-2422, 2013.

M. T. Howard, B. H. Shirts, L. M. Petros, K. M. Flanigan, R. F. Gesteland et al., Sequence specificity of aminoglycoside-induced stop codon readthrough: Potential implications for treatment of Duchenne muscular dystrophy, Annals of Neurology, vol.48, issue.2, pp.164-169, 2000.

S. Ashraf, L. Huang, and D. M. Lilley, Sequence determinants of the folding properties of box C/D kink-turns in RNA, RNA, vol.23, issue.12, pp.1927-1935, 2017.

T. A. Goody, S. E. Melcher, D. G. Norman, and D. M. Lilley, The kink-turn motif in RNA is dimorphic, and metal ion-dependent, RNA, vol.10, issue.2, pp.254-264, 2004.

J. E. Fletcher, P. R. Copeland, D. M. Driscoll, and A. Krol, The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2, RNA, vol.7, p.25, 2001.

K. Caban, S. A. Kinzy, and P. R. Copeland, The L7Ae RNA Binding Motif Is a Multifunctional Domain Required for the Ribosome-Dependent Sec Incorporation Activity of Sec Insertion Sequence Binding Protein 2, Molecular and Cellular Biology, vol.27, issue.18, pp.6350-6360, 2007.

L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics, vol.28, issue.23, pp.3150-3152, 2012.