S. A. Eming, P. Martin, and M. Tomic-canic, Wound repair and regeneration: mechanisms, signaling, and translation, Sci. Transl. Med, vol.6, pp.265-271, 2014.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, pp.314-321, 2008.

S. A. Eming, T. Krieg, and J. M. Davidson, Inflammation in wound repair: molecular and cellular mechanisms, J. Invest. Dermatol, vol.127, pp.514-525, 2007.

T. A. Wynn and P. Martin, Inflammation and metabolism in tissue repair and regeneration, Science, vol.356, pp.1026-1030, 2017.

R. R. Driskell, Distinct fibroblast lineages determine dermal architecture in skin development and repair, Nature, vol.504, pp.277-281, 2013.

W. S. Kim, Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts, J. Dermatol. Sci, vol.48, pp.15-24, 2007.

M. T. Cerqueira, R. P. Pirraco, and A. P. Marques, Stem Cells in Skin Wound Healing: Are We There Yet?, Adv. Wound Care, vol.5, pp.164-175, 2016.

Y. C. Hsu, L. Li, and E. Fuchs, Emerging interactions between skin stem cells and their niches, Nat. Med, vol.20, pp.847-56, 2014.

B. Shook, The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches, Annu. Rev. Cell. Dev. Biol, vol.32, pp.609-631, 2016.

V. Horsley and F. Watt, Repeal and replace: adipocyte regeneration in wound repair, Cell Stem Cell, vol.20, pp.424-426, 2017.

R. G. Marangoni, Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors, Arthritis Rheumatol, vol.67, pp.1062-1073, 2015.

M. V. Plikus, Regeneration of fat cells from myofibroblasts during wound healing, Science, vol.355, pp.748-752, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01896452

C. F. Guerrero-juarez and M. V. Plikus, Emerging nonmetabolic functions of skin fat, Nat. Rev. Endocrinol, vol.14, pp.163-173, 2018.

B. Haertel, T. Von-woedtke, K. D. Weltmann, and U. Lindequist, Non-thermal atmospheric-pressure plasma possible application in wound healing, Biomol. Ther. (Seoul), vol.22, pp.477-490, 2014.

G. Isbary, Non-thermal plasma -More than five years of clinical experience, Clinical Plasma Med, vol.1, pp.19-23, 2013.

M. Nasir, N. Lee, B. K. Yap, S. S. Thong, K. L. Yap et al., Cold plasma inactivation of chronic wound bacteria, Arch. Biochem. Biophys, vol.605, pp.76-85, 2016.

G. M. Xu, Dual effects of atmospheric pressure plasma jet on skin wound healing of mice, Wound Repair Regen, vol.23, pp.878-884, 2015.

J. Balzer, Non-thermal dielectric barrier discharge (DBD) effects on proliferation and differentiation of human fibroblasts Are Primary Mediated by Hydrogen Peroxide, PLoS One, vol.10, p.144968, 2015.

S. Arndt, Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo, PLoS One, vol.8, p.79325, 2013.

S. Arndt, Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo, PLoS One, vol.10, p.120041, 2015.

S. Hasse, Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma, Clin. Exp. Dermatol, vol.41, pp.202-209, 2016.

S. Arndt, P. Unger, M. Berneburg, A. K. Bosserhoff, and S. Karrer, Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode, J. Dermatol. Sci, vol.89, pp.181-190, 2018.

A. Schmidt, S. Bekeschus, K. Wende, B. Vollmar, and T. Von-woedtke, A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds, Exp. Dermatol, vol.26, pp.156-162, 2017.

M. Chatraie, G. Torkaman, M. Khani, H. Salehi, and B. Shokri, In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment, Sci. Rep, vol.8, p.5621, 2018.

A. Schmidt, Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways, J. Biol. Chem, vol.290, pp.6731-6750, 2015.

J. Liebmann, Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells, Nitric Oxide, vol.24, pp.8-16, 2011.

P. Brun, Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells, PLoS One, vol.9, p.104397, 2014.

M. Dezest, Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines, Sci. Rep, vol.7, p.41163, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01481293

A. Duval, Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma, PLoS One, vol.8, p.83001, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01549407

F. Girard, Formation of Reactive nitrogen species including peroxynitrite in physiological buffer exposed to a cold atmospheric plasma, RSC Advances, vol.6, pp.78457-8467, 2016.

S. L. Harris and A. J. Levine, The p53 pathway: positive and negative feedback loops, Oncogene, vol.24, pp.2899-2908, 2005.

J. Campisi and F. Di-fagagna, Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell. Biol, vol.8, pp.729-740, 2007.

J. P. Coppé, Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.6, pp.2853-2868, 2008.

T. Nacarelli and C. Sell, Targeting metabolism in cellular senescence, a role for intervention, Mol. Cell. Endocrinol, vol.455, pp.83-92, 2017.

S. Loisel, Brief Report: Proteasomal indoleamine 2,3-dioxygenase degradation reduces the immunosuppressive potential of clinical grade-mesenchymal stromal cells undergoing replicative senescence, Stem Cells, vol.35, pp.1431-1436, 2018.

P. Anderson, Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis, Gut, vol.62, pp.1131-1141, 2013.

J. Kim and P. Hematti, Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages, Exp. Hematol, vol.37, pp.1445-1453, 2009.

S. Arndt, Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells, Exp. Dermatol, vol.22, pp.284-289, 2013.

C. Schneider, Cold atmospheric plasma causes a calcium influx in melanoma cells triggering CAP-induced senescence, Sci Rep, vol.8, p.10048, 2018.

J. Gay-mimbrera, Clinical and biological principles of cold atmospheric plasma application in skin cancer, Adv. Ther, vol.33, pp.894-909, 2016.

M. Keidar, Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy, Br. J. Cancer, vol.105, pp.1295-1301, 2011.

B. Haertel, F. Volkmann, T. Von-woedtke, and U. Lindequist, Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma, Immunobiol, vol.217, pp.628-633, 2012.

S. Bekeschus, Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet, Plasma Process. Polym, vol.10, pp.706-713, 2013.

L. Bundscherer, Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines, Immunobiol, vol.218, pp.1248-1255, 2013.

B. Haertel, Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes, Biomed. Res. Int, p.761451, 2013.

A. Schmidt, Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells, Free Radic. Res, vol.47, pp.577-592, 2013.

F. Virard, Cold Atmospheric plasma induces a predominantly necrotic cell death via the microenvironment, PLoS One, vol.10, p.133120, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01504025

J. R. Liu, G. M. Xu, X. M. Shi, and G. J. Zhang, Low temperature plasma promoting fibroblast proliferation by activating the NF-?B pathway and increasing cyclinD1 expression, Sci Rep, vol.7, p.11698, 2017.

C. Canal, Plasma-induced selectivity in bone cancer cells death. Free Radic, Biol. Med, vol.110, pp.72-80, 2017.

F. Tan, F. O'neill, M. Naciri, D. Dowling, and M. Al-rubeai, Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating, Acta Biomater, vol.8, pp.1627-1638, 2012.

M. Wang, Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells, Tissue Eng. Part A, vol.20, pp.1060-1071, 2014.

J. Park, Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways, Sci. Rep, vol.6, p.39298, 2016.

S. U. Kang, Nonthermal plasma treated solution inhibits adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes via ER stress signal suppression, Sci. Rep, vol.8, p.2277, 2018.

V. Turinetto, E. Vitale, and C. Giachino, Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy, Int. J. Mol. Sci, vol.17, 2016.

M. Matjusaitis, G. Chin, E. A. Sarnoski, and A. Stolzing, Biomarkers to identify and isolate senescent cells, Ageing Res. Rev, vol.29, pp.1-12, 2016.

A. Brandl, M. Meyer, V. Bechmann, M. Nerlich, and P. Angele, Oxidative stress induces senescence in human mesenchymal stem cells, Exp Cell. Res, vol.317, pp.1541-1547, 2011.

V. Gambino, Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging, Aging Cell, vol.12, pp.435-480, 2013.

A. Borodkina, A. Shatrova, P. Abushik, N. Nikolsky, and E. Burova, Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells, Aging (Albany NY), vol.6, pp.481-495, 2014.

S. Matsuda, Y. Nakagawa, Y. Kitagishi, A. Nakanishi, and T. Murai, Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem, Stromal Cells Regulation. Cells, vol.7, 2018.

K. H. Vousden and D. P. Lane, p53 in health and disease, Nat. Rev. Mol. Cell. Biol, vol.8, pp.275-283, 2007.

A. Vigneron and K. H. Vousden, ROS and senescence in the control of aging, Aging (Albany NY), vol.2, pp.471-474, 2010.

F. Kruiswijk, C. F. Labuschagne, and K. H. Vousden, p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nat. Rev. Mol. Cell. Biol, vol.16, pp.393-405, 2015.

E. L. James, Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease, J. Proteome Res, vol.14, pp.1854-1871, 2015.

D. V. Ziegler, C. D. Wiley, and M. C. Velarde, Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging, Aging Cell, vol.14, pp.1-7, 2015.

C. Correia-melo, Mitochondria are required for pro-ageing features of the senescent phenotype, EMBO J, vol.35, pp.724-742, 2016.

D. Wang, Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function, Oncotarget, vol.7, pp.28286-28300, 2016.

B. R. Stab, Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Front Aging Neurosci, vol.8, p.299, 2016.

D. Muñoz-espín and M. Serrano, Cellular senescence: from physiology to pathology, Nat. Rev. Mol. Cell. Biol, vol.15, pp.482-96, 2014.

S. He and N. E. Sharpless, Senescence in health and disease, Cell, vol.169, pp.1000-1011, 2017.

K. Gazeli, P. Svarnas, B. Held, L. Martin, and F. Clement, Possibility of controlling the chemical pattern of He and Ar "guided streamer" by means of N2 or O2 additives, J. Applied Physics, vol.117, p.93302, 2015.