Skip to Main content Skip to Navigation
Journal articles

Alexander representation of tangles.

Abstract : A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of Z[t,t(-1)]-modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk), this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.
Document type :
Journal articles
Complete list of metadata
Contributor : Responsable Hal Lma-Pau Connect in order to contact the contributor
Submitted on : Monday, June 17, 2019 - 5:43:35 PM
Last modification on : Wednesday, February 16, 2022 - 3:43:44 AM

Links full text




Stephen Bigelow, Alessia Cattabriga, Vincent Florens. Alexander representation of tangles.. Acta Mathematica Vietnamica, Springer Singapore, 2015, 40 (2), pp.339-352. ⟨10.1007/s40306-015-0134-z⟩. ⟨hal-02158120⟩



Record views