, 2 -Rich Regions, Chem. Geol, vol.322, pp.151-171, 2012.

H. Zhao, R. Dilmore, D. E. Allen, S. W. Hedges, Y. Soong et al., Measurement and Modeling of CO 2 Solubility in Natural and Synthetic Formation Brines for CO 2 Sequestration, Environ. Sci. Technol, vol.49, 1972.

C. A. Appelo, D. L. Parkhurst, and V. E. Post, Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases Such as CO2 at High Pressures and Temperatures, Geochim. Cosmochim. Acta, vol.125, pp.4-9, 2014.

H. Zhao, Phase Equilibria in CO 2 -Brine System for CO 2 -Storage, 2014.

A. Bamberger, G. Sieder, G. Maurer, and . High-pressure,

K. J. Supercrit, , vol.17, pp.9-16, 2000.

M. D. Bermejo, A. Martín, L. J. Florusse, C. J. Peters, and M. J. Cocero, The Influence of Na 2 SO 4 on the CO 2 Solubility in Water at High Pressure, Fluid Phase Equilib, vol.238, pp.220-228, 2005.

Y. Liu, M. Hou, G. Yang, and B. Han, Solubility of CO 2 in Aqueous Solutions of NaCl, KCl, CaCl 2 and Their Mixed Salts at Different Temperatures and Pressures, J. Supercrit. Fluids, vol.56, pp.125-129, 2011.

S. Hou, G. C. Maitland, and J. P. Trusler, Measurement and Modeling of the Phase Behavior of the (Carbon Dioxide+water) Mixture at Temperatures from 298.15 K to 448.15 K, J. Supercrit. Fluids, pp.73-81, 2013.

D. Tong, J. P. Trusler, and D. Vega-maza, Solubility of CO 2 in Aqueous Solutions of CaCl 2 or MgCl 2 and in a Synthetic Formation Brine at Temperatures up to 423 K and Pressures up to 40 MPa, J. Chem. Eng. Data, vol.58, 2013.

H. Guo, Y. Chen, Q. Hu, W. Lu, W. Ou et al., Quantitative Raman Spectroscopic Investigation of Geo-Fluids HighPressure Phase Equilibria: Part I. Accurate Calibration and

. Mpa, Fluid Phase Equilib, vol.382, pp.7-7, 2014.

H. Zhao, M. V. Fedkin, R. M. Dilmore, S. N. Lvov, and . Carbon, Bar. Geochim. Cosmochim. Acta, vol.149, pp.165-189, 2000.

H. Messabeb, F. Contamine, P. Ce?ac, J. P. Serin, and . Gaucher,

. Mpa, J. Chem. Eng. Data, vol.61, pp.3573-3584, 2016.

S. Bando, F. Takemura, M. Nishio, E. Hihara, and M. Akai, Solubility of CO 2 in Aqueous Solutions of NaCl at (30 to 60)°C and (10 to 20) MPa, J. Chem. Eng. Data, vol.48, pp.576-579, 2003.

W. Yan, S. Huang, and E. H. Stenby, Measurement and Modeling of CO 2 Solubility in NaCl Brine and CO 2 ?Saturated NaCl Brine Density, Int. J. Greenhouse Gas Control, vol.5, 1460.

, Comparison between experimental data obtained in the two synthetic brines at 323 (?), 373 ( ? ), and 423 K (?) up to 20 MPa and predicted CO 2 solubility obtained with PhreeSCALE (solid line) and PSUCO2 model

H. Guo, Y. Huang, Y. Chen, and Q. Zhou, Quantitative Raman Spectroscopic Measurements of CO 2 Solubility in NaCl Solution from (273.15 to 473.15) K at p = (10.0, 20.0, 30.0, and 40.0) MPa, J. Chem. Eng. Data, pp.466-474, 2016.

A. Bastami, M. Allahgholi, and P. Pourafshary, Experimental and Modelling Study of the Solubility of CO 2 in Various CaCl 2 Solutions at Different Temperatures and Pressures, Pet. Sci, vol.11, pp.569-577, 2014.

H. Zhao, R. M. Dilmore, and S. N. Lvov, Experimental Studies and Modeling of CO 2 Solubility in High Temperature Aqueous CaCl 2 , MgCl 2 ,Na 2 SO 4 , and KCl Solutions, AIChE J, vol.61, 2015.

H. Messabeb, F. Contamine, P. Ce?ac, J. P. Serin, C. Pouget et al.,

, MPa Using the Conductometric Titration, J. Chem. Eng. Data, vol.62, pp.4228-4234, 2017.

A. Pe?ez-salado-kamps, E. Meyer, B. Rumpf, and G. Maurer,

, J. Chem. Eng. Data, vol.52, pp.817-832, 2007.

J. Gao, D. Zheng, and T. Guo, Solubilities of Methane, Nitrogen, Carbon Dioxide, and a Natural Gas Mixture in Aqueous Sodium Bicarbonate Solutions under High Pressure and Elevated Temperature, J. Chem. Eng. Data, vol.42, pp.6-9, 1997.

Z. Li, M. Dong, S. Li, and L. Dai, Densities and Solubilities for Binary Systems of Carbon Dioxide + Water and Carbon Dioxide + Brine at 59°C and Pressures to 29 MPa, J. Chem. Eng. Data, vol.49, pp.1026-1031, 2004.

C. S. Wong, P. Y. Tishchenko, and W. K. Johnson, Solubility of Carbon Dioxide in Aqueous HCl and NaHCO 3 Solutions from 278 to 298 K, J. Chem. Eng. Data, vol.50, pp.817-821, 2005.

X. Han, Z. Yu, J. Qu, T. Qi, W. Guo et al., Measurement and Correlation of Solubility Data for CO 2 in NaHCO 3

, Aqueous Solution. J. Chem. Eng. Data, vol.56, 1213.

R. Jacob and B. Z. Saylor, CO 2 Solubility in Multi-Component Brines Containing NaCl, KCl, CaCl 2 and MgCl 2 at 297 K and 1?14

. Mpa, Chem. Geol, vol.424, pp.8-14, 2016.

A. Lach, F. Boulahya, L. Andre, A. Lassin, M. Azaroual et al., Thermal and Volumetric Properties of Complex Aqueous Electrolyte Solutions Using the Pitzer Formalism ? The PhreeSCALE Code, Comput. Geosci, vol.92, pp.5-8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01315439

D. Parkhurst and T. Appelo, Description of Input and Examples for PHREEQC Version 3 -A Computer Program for Speciation, BatchReaction, One-Dimensional Transport, and Inverse Geochemical Calculations, USGS, 2013.

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 Bar and 0 to 1000°C, Comput. Geosci, vol.18, pp.899-947, 1992.

L. N. Plummer and E. Busenberg, The Solubilities of Calcite, Aragonite and Vaterite in CO 2 -H 2 O Solutions between 0 and 90°C, and an Evaluation of the Aqueous Model for the System CaCO 3 -CO 2 -H 2 O, Geochim. Cosmochim. Acta, vol.46, 1011.

K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 1991.

A. Lach, K. Ballerat-busserolles, L. Andre, M. Simond, A. Lassin et al., , vol.62, pp.3561-3576, 2017.