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ABSTRACT
In this work, we compare four inhomogeneous square-well fluidmodels, only distinct in the approxi-
mation on the pair correlation function present in the attractive free energy term of the density func-
tional theory (DFT). Various criteria canbe considered to select or validate an approximation, depend-
ing on fundamental interests or for a specified application. Here the considered criteria of selection
were the verification of sum rules, and the prediction of both the adsorbed quantity and the den-
sity profiles. Even if a model satisfies one of these criteria, it may fail to describe others, so they can
be considered supplementary to each other and in no case redundant. According to this study, one
can attach more importance to any of these criteria depending on the specific objectives intended
for the model development and purpose. They can serve as references in the development of new
DFT models, eventually with other criteria, according to the objective of the work and the accuracy
desired.

1. Introduction

The study of adsorption phenomena can be carried out
with different fluidmodels, using various approximations
within the same general theoretical framework such as
the classical density functional theory (DFT) [1] consid-
ered in this work. This theory describes an inhomoge-
neous fluid through its free energy functional, which is
the equivalent of the free energy for homogeneous fluids.

The free energy depends on functions which are the
local densities of the chemical species constituting the
fluid. The form of this functional depends on the micro-
scopic representation assumed for the fluid, which con-
tains intermolecular interactions that are repulsive at
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short range and attractive at longer distances. More-
over, the inhomogeneous fluid study requires different
tools according to the variations of the fluid density.
For vapour–liquid interfaces, as density gradients are
rather smooth, local densities can be used to reproduce
their usual thermodynamical properties. However, when
fluid–solid interactions need to be considered, such as in
the case of adsorption, density gradients are too sharply
sloped to use the same representations and functions as
for the case of fluid interfaces. In the DFT framework,
this interaction can be considered as an external potential
applied to the fluid (the considered system), but this does
not indicate directly the dependence of the free energy
functional to the density. This point allows considering
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various approximations on the fluid representation. In
particular, the weighted density approximations (WDA)
allows not only taking into account the local density, but
also the density of neighbouring points. To do so, one can
consider a sphere centred on the specific point, delimit-
ing the range of the effect of the neighbourhood. Thermo-
dynamical properties are thus averaged from this sphere,
and if the resulting approximation contains a pertinent
physical sense to describe the system, it is thus possible
to model the properties of the inhomogeneous fluid ade-
quately.

This technique can be introduced by various ways,
with different degrees of approximation, according to
the averages applied or the weighting radius considered
of the sphere. In practice, the choice of these approx-
imations is related to the representation of the repul-
sive and attractive parts of the intermolecular potential,
through the free energy functional. The repulsive part
is generally described by the fundamental-measure the-
ory (FMT) developed by Rosenfeld in 1989 [2]. This the-
ory considers weightings on spheres of radii equal to the
radii of individual hard-spheres. This model has shown
very good results and many free energy functionals are
now based on it, using the hard-sphere as a reference (for
example, see [3–5]). Some of these functionals consider
an additional attractive term, treated as a perturbation of
the repulsive part. However, the description of this kind
of terms often brings various approximations because of
the lack of knowledge of the intermolecular potential.
The coarse-grained (CG)method is one of the techniques
similar to the FMT, as an example of WDA. In that case,
the weighting is generally done with the interaction dis-
tance, defined with real or effective parameters, from the
intermolecular interaction potential selected.

The addition of these approximations, and the choice
of the terms forwhich they are applied, raises the question
of the consistency of themodel developed or used. In par-
ticular, some thermodynamical relations need to be sat-
isfied by the model for the sake of consistency, between
free energy, pressure, surface tension or pair correlation
function. The latter is related to the probability to find a
molecule at a certain distance of another. These relations
are defined both for homogeneous and inhomogeneous
phases, and a certain DFT may not satisfy all of them,
according to its approximations. In particular, we need
to consider approximations on the pair correlation func-
tion. Indeed, if we would know perfectly this function, we
could characterise totally the system, which is of course
not accessible.

The aim of this work is to compare these different
approximations and their ability to satisfy various crite-
ria. Among the countless approximationswe can consider
for this function, we will focus only on four of them. The

first one is the mean-field (MF) approximation, which
neglects interactions betweenmolecules into the pair cor-
relation function only, and which is used sometimes to
describe long-range effects. The second one is based on
expressions defined for the bulk phase. The third one is an
application of the CG method. Finally, the fourth comes
from the FMT. We could extend the benchmark to more
functions, but we cannot be exhaustive, and these four
cases already describe a range of quite different approx-
imations within the same theoretical framework.

The question asked at the beginning of this work is
to know for which terms we can apply these different
approximations, and how. Then, the study of thermody-
namical rules called sum rules [6] will be presented, as
a first test of consistency and quality of these models.
Finally, the study of the fluid microstructure predicted by
each model will highlight other aspects of their perfor-
mance. All these approximations will use the square-well
potential to describe intermolecular interactions. This
will constitute a common basis in order to clearly estab-
lish the importance of the pair correlation function used
in the attractive contribution termof the free energy func-
tional.

2. Free energy functionals for the square-well
fluid

2.1. DFT, weighted density approximations and
hard-sphere description

In the general classical DFT framework [1], the grand
potential ! is a functional of all the local densities ρi (⃗r),
for the species i at a given point r⃗ in the space. The rela-
tionship between this functional, the free energy func-
tional F[{ρi}], an external potential Vext,i (⃗r) and the
chemical potential µi is

![{ρi}] = F[{ρi}] +
∑

i

∫
ρi (⃗r)

(
Vext,i (⃗r) − µi

)
d3r.

(1)

The chemical potentialµi is one of the homogeneous flu-
ids. The system considered is the fluid, and the exter-
nal potential Vext,i (⃗r) takes into account the interaction
between this fluid and a solid, in the case of adsorption.
Because of the presence of this solid and the fluid–solid
interaction, the structure of the fluid changes close to the
interface. In real systems, attractive interactions between
the fluid and the solid lead to an increase of the number
of molecules close to the wall. But, for theoretical stud-
ies, where the goal is to obtain a good representation of
the fluid itself, we can choose a repulsive external poten-
tial, as for instance a hard wall, to test the quality of the
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functional itself.Wewill consider this potential in further
sections.

The description of the fluid is related to the free energy
functional F[{ρi}]. It is the equivalent of the equation of
state for an inhomogeneous fluid. Like the grand poten-
tial, it is a functional of all the local densities ρi (⃗r), and
it contains the fluid–fluid interactions. For homogeneous
systems, this functional becomes the free energy func-
tion, and must be consistent with the chemical potential
µi cited above. The combination of these elements leads
to the description of the fluid at equilibrium, by the min-
imisation of the grand potential:

δ!

δρi (⃗r)
= δF

δρi (⃗r)
+Vext,i (⃗r) − µi = 0. (2)

The free energy functional is composed of an ideal
term, describing the ideal gas contribution, and an excess
term, containing the fluid–fluid interactions: F = F id +
F ex. To obtain the density profile, associated with the
microstructure of the fluid, this decomposition and the
expression of the ideal free energy are used to obtain

ρi (⃗r) = ρbulk,i exp
(

βµex
i − δβF ex

δρi (⃗r)
− βVext,i (⃗r)

)
.

(3)

The term δβF ex

δρi (⃗r) acts as an inhomogeneous chemical
potential for the system, and it contains all the local
densities {ρi (⃗r)}. As it is done in DFT studies, this
self-consistent equation is solved numerically, with the
Picard iteration scheme (see for instance reference [6] for
details).

To describe both the repulsive short-range and the
attractive long-range interactions of the molecules, the
potential betweenmolecules i and j at distance r is decom-
posed in two parts,

ui j(r) = uHS
i j (r) + uatti j (r). (4)

The hard-sphere potential (HS) corresponds to the repul-
sion and the notation att points out the attractive con-
tribution. Because the hard-sphere repulsion determines
to a great extent the fluid behaviour, we treat the attrac-
tive part as a perturbation of this potential. Other-
wise, the Statistical Associating Fluid Theory for Vari-
able Range of interaction (SAFT-VR [7]) decomposes
the free energy into different contributions. For spheri-
cal molecules without association (the monomer term),
the excess free energy is decomposed like the potential,
F ex = FHS + F att. The term FHS describes the hard-
sphere contribution to the free energy and F att is the
attractive one. We will specify the attractive potential in

the next section. First, we present the hard-sphere formal-
ism, based on weighted functions.

WDAs are used into DFT to take into account the
influence of neighbourhood at a certain point r⃗ of space.
Indeed, the system is not correctly described with only
local densities ρi (⃗r) into the functional FHS if the den-
sity variations are important. Thus, non-local DFT with
weighted densities needs to be used. This kind of approx-
imation leads to the coarse-grained (CG) model or the
FMT, according to the weighting chosen (and other spe-
cific assumptions). In this work, we propose a general
formalism associated with WDA, compatible both with
coarse-grainedmodels and theKierlik andRosinberg ver-
sion of the FMT (KR-FMT) [8]. Contrarily to the original
version of Rosenfeld [2], which contains scalar and vecto-
rial weighted densities, the KR-FMT contains only scalar
densities.

The weights depend on a sphere, characterised by a
radiusR, which can correspond to the hard-sphere radius
Ri, the diameter σ i = 2Ri, the contact distance between
two different hard-spheres Ri + Rj, or any other arbi-
trary distance, real or effective, according to the model.
Weighting on a function, e.g. the local density ρi (⃗r), con-
sists in doing averages of this function on the volume of
the sphere (α = 3), on the surface of the sphere (α = 2) or
on surface variations of the sphere (α = 1, 0). The corre-
sponding weights use Heaviside function and its deriva-
tives, as the Dirac distribution:

p(3)(R; r) = '(R − r)
p(2)(R; r) = δ(R − r)
p(1)(R; r) = 1

8π δ′(R − r)
p(0)(R; r) = − 1

8π δ′′(R − r) + 1
2πr δ

′(R − r)

. (5)

Applied to a general function f, the weighted function of
type α can be written as

n(α)( f ;R; r⃗) =
∫

f
(
r⃗ ′) p(α)

(
R; |⃗r ′ − r⃗|

)
d3r′ (6)

(this notation was introduced in the work [9]). In the KR-
FMT, all of these weights are used to define weighted den-
sities of a specie i for the hard-sphere,

n(α)
i (⃗r) = n(α)(ρi;Ri; r⃗), (7)

and total weighted densities nα (⃗r) =
∑

i n
(α)
i (⃗r), with a

sum over all the species. These latter are the functions of
the free energy density functional)HS defined in the gen-
eral FMT formalism. Different expressions of this func-
tional are used, depending on the degree of approxima-
tion of the model. We use the White-Bear version mark
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II [10] of the FMT, with the functional

)HS = − ln(1 − n3) n0 +
1 + 1

9n3
2 + 1

18n3
3

(1 − n3)
n1n2

+
1 − 4

9n3 + 1
18n3

2

24π (1 − n3)2
n23. (8)

From this quantity, we define the contribution of hard-
spheres at the free energy

βFHS =
∫

)HS[{nα (⃗r)}] d3r (9)

and the related inhomogeneous chemical potential for
hard-spheres

µHS
i (⃗r) = δFHS

δρi (⃗r)
=

3∑

α=0

∫
∂)SD

∂nα

∣∣∣∣
(⃗ri)

p(α)(Ri; |⃗ri − r⃗|) d3ri

=
3∑

α=0
µ(α)
i (⃗r) (10)

with the weighted functions

µ(α)
i (⃗r) = n(α)

(
∂)SD

∂nα

;Ri; r⃗
)

. (11)

Here, we use the general notation of weighted functions
(6), applied on derivatives of the functional )HS, with
weights on a sphere of radiusRi. Theseweights come from
the functional derivation of total weighted densities, w.r.t.
the local density of the specie i,

δnα (⃗r ′)

δρi (⃗r)
= p(α)(Ri; |⃗r − r⃗ ′|). (12)

2.2. The square-well potential contribution to the
attractive free energy functional

The attractive contribution to the free energy functional,
in the general DFT formalism [11] is given as a func-
tion of the attractive part of the potential uatti j between two
molecules of species i and j, and the pair correlation func-
tion of these molecules gij,

βF att = 1
2

∑

i, j

∫ ∫
ρi (⃗ri) ρ j (⃗r j) gi j (⃗ri ; r⃗ j)

× βuatti j (|⃗ri − r⃗ j|) d3ri d3r j. (13)

Barker and Henderson [12] proposed to treat the pair
correlation function of the (attractive) fluid as an expan-
sion of the pair correlation function of the hard-sphere
reference, gHS

i j ; this last function being the first order of

the expansion. The second order is computed by using the
compressibility of hard-spheres KSD, the attractive part
of the potential and the temperature with β . Barker and
Henderson detailed the assumptions to write the pair cor-
relation function as

gi j (⃗ri ; r⃗ j) =
(
1 − 1

2
KHS βuatti j (|⃗ri − r⃗ j|)

)
gHS
i j (⃗ri ; r⃗ j),

(14)

and named this formulation, the macroscopic compress-
ibility approximation. Then, they used another assump-
tion to add a term to the second order, written V

(
∂gHS

i j
∂V

)

for a homogeneous fluid, named the local compressibility
approximation. Contrarily to our previous paper [9], we
do not use this approximation in this work, because we
will consider some further expressions forwhich this local
description has no sense for inhomogeneous systems.

Now, the square-well potential is chosen for the attrac-
tive contribution between two molecules i and j. This
potential is defined by a constant depth εij for a dis-
tance included between the interaction distance of hard-
sphereRi +Rj and the attractive rangeλiRi +λjRj. Further,
we will specify the well depth for interaction between
two identical molecules i, written εi. According to the
Lorentz–Berthelot mixing rule, the coupled well depth is
εi j = √

εiε j. Because it is attractive, the potential uatti j (r) is
negative, whereas the variable εij is positive. So, uatti j (r) =
−εi j × ϕi j(r) can be expressed as

ϕi j(r) = '(λiRi + λ jR j − r) − '(Ri + Rj − r) (15)

which defines the attractive zone of the potential. Seeing
that [ϕij(r)]2 = ϕij(r) we have

βF att = −1
2

∑

i, j

(βϵi j)

∫ ∫
ρi (⃗ri) ρ j (⃗r j) gi j (⃗ri ; r⃗ j)

× ϕi j(|⃗ri − r⃗ j|) d3ri d3r j. (16)

using the value of the pair correlation function in the
attractive zone, at the distance |⃗ri − r⃗ j|:

gatti j (⃗ri ; r⃗ j) =
(
1 + 1

2
KHSβεi j

)
gHS
i j (⃗ri ; r⃗ j). (17)

The pair correlation function gatti j , thus defined, and its
hard-sphere equivalent gHS

i j , depends on the two positions
r⃗i and r⃗ j of molecules i and j. In the SAFT-VR approach
[7], this dependence is changed to only one variable, by
applying the mean-value theorem on gHS

i j , and consider-
ing the equivalent value at contact instead of the distance
|⃗ri − r⃗ j|. To do that, one needs to consider the effective
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density at contact, corresponding to the value of gHS
i j at the

real density, at themean distance between twomolecules.
Then, the effective density is given by the real density and
some coefficients, computed from an analytic approxi-
mated expression of the pair correlation function of the
hard-sphere, as a function of the distance (see [13] for the
function, and [7] for details of this method).

Because the function used to compute these coeffi-
cients is defined for an homogeneous fluid, an approxi-
mation is performed when using them in an inhomoge-
neous fluid formalism.However, one can assume that this
approximation does not alter the main behaviour of the
fluid microstructure, as shown in our previous publica-
tion [9] or with stronger but physical approximations (see
the MF approximation below). Hence, in the following,
we consider the pair correlation function at contact and
at the effective density, gHS

i j,eff. If the variable of this func-
tion is chosen as r⃗i, that means we apply the mean-value
theorem on r⃗ j, which is replaced by the effective contact.

Thus, we obtain

βF att = −1
2

∑

i, j

(βεi j)

∫
ρi (⃗ri) gatti j,eff (⃗ri)

×
(∫

ρ j (⃗r j) ϕi j(|⃗ri − r⃗ j|) d3r j
)
d3ri. (18)

The dependence of gatti j,eff (⃗ri) will be specified below.
Because the aim of this paper is to compare various
approximations in this method, different approximated
expressions of this function will be compared, according
to the dependence on the densities.

In reference [9], we applied the FMT formalism to this
functional, and derived it to compute the inhomogeneous
chemical potential. In this work, the functional is first
derived to define the attractive contribution of the chem-
ical potential

µatt
k (⃗r) = δF att

δρk (⃗r)
(19)

to obtain

βµatt
k (⃗r) = −

∑

i

(βεik) gattik,eff (⃗r)
∫

ρi (⃗ri) ϕik(|⃗ri − r⃗|) d3ri

− 1
2

∑

i, j

(βεi j)

∫
ρi (⃗ri)

δgatti j,eff (⃗ri)
δρk (⃗r)

×
(∫

ρ j (⃗r j) ϕi j(|⃗ri − r⃗ j|) d3r j
)
d3ri. (20)

The functional derivative
δgatti j,eff (⃗ri)
δρk (⃗r)

will be computed for
each approximation presented in the next section. To
precise it, we need to choose an approximation on its

dependence on the local density ρk (⃗r), through bulk or
weighted densities into gatti j,eff (⃗ri).

Here, we apply the general notation for weighting to
the integrals above

∫
ρi (⃗ri) ϕik(|⃗ri − r⃗|) d3ri = ν̄(3)

ik (⃗r) − n̄(3)
ik (⃗r). (21)

Thus, we apply averages on the volume of a sphere of
radius Ri + Rj, with

n̄(α)
i j (⃗r) = n(α)

(
ρi ; Ri + Rj ; r⃗

)
, (22)

and averages on the volume of a sphere of radius λiRi +
λjRj, with

ν̄(α)
i j (⃗r) = n(α)

(
ρi ; λiRi + λ jR j ; r⃗

)
. (23)

The differences in Equations (22) and (23) are related to
the attractive zone on the potential, centered in the point
r⃗. In this approach, it is not necessary to consider the
FMT decomposition of these two spheres, because at the
end, only averages are computed on the volume of these
spheres, thus describing an interaction and not individual
spheres, as in the hard-sphere description.

At the end,

βµatt
k (⃗r) = −

∑

i

(βεik) gattik,eff (⃗r)
(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)

− 1
2

∑

i, j

(βεi j)

∫
ρi (⃗ri)

δgatti j,eff (⃗ri)
δρk (⃗r)

×
(
ν̄(3)
ji (⃗ri) − n̄(3)

ji (⃗ri)
)
d3ri.

(24)

In order to obtain density profiles, one needs to choose a
model for gatti j,eff (⃗r) and its derivative, in order to compute
the inhomogeneous chemical potential µatt

k (⃗r), and use
the result in the Picard iteration algorithm.

2.3. List of approximations on the effective pair
correlation function

... Themean-field approximation
The strongest approximation one can consider on the
effective pair correlation function gatti j,eff (⃗r) that does not
eliminate the attractive term is theMFapproximation. It is
worth noting here that this approximation is only applied
for the pair correlation function in the general framework
defined in the previous section. Other models consider-
ing aMF approximation can present other results because
they use another general framework.

The hypothesis used here consists in neglecting the
correlations into this function gatti j,eff (⃗r), used into the
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attractive free energy, and thus neglecting the Barker–
Henderson expansion. That means we use

gatti j,eff
∣∣∣
MF

= 1. (25)

The consequence of this approach is that all the inhomo-
geneous aspects are contained into the weighted densi-
ties

(
ν̄(3)
i j (⃗r) − n̄(3)

i j (⃗r)
)
, from the expression of the attrac-

tive part of the potential uatti j with the weighted density
formalism. This constitutes a first model, which has pre-
sented good results on adsorption studies, even if itsmain
hypothesis is strong (see [14] for recent considerations).

Equation (24) is now written in a really simple form,
because of the cancellation of the derivative of gatti j,eff (⃗r):

βµatt
k (⃗r)

∣∣∣
MF

= −
∑

i

(βεik)
(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)

. (26)

With the aim to verify whether this approximation
is too strong for a correct description of the adsorp-
tion, we will compute density profiles with this func-
tional and compare them to simulation results for the
same system. Before this, we present other approxi-
mations on the function gatti j,eff (⃗r). Several approaches
exist describing the pair correlation function beyond
the MF approximation for various kinds of inho-
mogeneous systems (see the recent reference [15]
with nematic liquid crystals for example). A common

approach consists in considering the MF approximation
as a long-range effect on correlations, and add another
term to describe short-range effects. This leads to add
terms depending on the pair correlation function at con-
tact (see references [16] and [17] as applications of this
technique to Local DFT, and reference [3] to Non-Local
DFT).We do not test thismethod in this work, in order to
use only the SAFT-VR treatment, with effective densities,
in the three other approximations below.

... The Bulk approximation
The effective pair correlation function considered in this
section is the bulk one. This approach was developed in
our previous work [9] and rests upon the idea of using
the bulk SAFT-VR treatment only on the bulk pair corre-
lation function, and use this homogeneous result directly
into the functional. gHS

i j,eff [{ξα}] is then given as a func-
tion of the Scaled Particle Theory variables {ξα} that are
the bulk limit of the weighted densities for a hard-sphere
{nα (⃗r)}.

With the White-Bear II version of the FMT [10], the
corresponding bulk effective pair correlation function is

gHS
i j,eff

∣∣∣
Bulk

= 1
1 − ξ eff

i j
+

[ Ri R j

Ri + Rj

ξ2

3ξ3

] 3ξ eff
i j + (ξ eff

i j )2

(1 − ξ eff
i j )2

+
[ Ri R j

Ri + Rj

ξ2

3ξ3

]2 2(ξ eff
i j )3

(1 − ξ eff
i j )3

(27)

with ξ eff
i j = c1(λi j)ξ3 + c2(λi j)ξ3

2 + c3(λi j)ξ3
3 and the

SAFT-VR coefficients [7]

⎛

⎝
c1
c2
c3

⎞

⎠ =

⎛

⎝
2.258 55 −1.503 49 0.249 434

−0.669 270 1.400 49 −0.827 739
10.157 6 −15.042 7 5.308 27

⎞

⎠

⎛

⎝
1
λi j
λi j

2

⎞

⎠ ,

(28)
where λij is the coupled attractive range parameter λi j =
λiRi+λ jR j
Ri+Rj

.
The attractive term of the free energy with this expres-

sion of the pair correlation function is proportional to the
MF result. However, because gHS

i j,eff contains the bulk den-
sities here, its functional derivative is not zero and the
chemical potential of the attractive term is not propor-
tional to the MF one.

To compute the compressibility used in the Barker–
Henderson expansion, we use the expression related to
the White-Bear II version of the FMT (computed here
[9]),

KHS
∣∣∣
Bulk

= (1 − ξ3)
4 ξ0

(1 − ξ3)2 ξ0 +
(
2 + 4

3ξ
2
3 − 2

3ξ
3
3
)
(1 − ξ3) ξ1ξ2 + (9 − 8ξ3 + 7ξ 2

3 − 2ξ 3
3 ) 1

36π ξ 3
2

. (29)

Then, Equation (24) becomes

βµatt
k (⃗r)

∣∣∣
Bulk

= −
∑

i

(βεik) gattik,eff (⃗r)
(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)

− 1
2

∑

i, j

(βεi j)
∂gatti j,eff
∂Nk

×
∫

ρi (⃗ri)
(
ν̄(3)
ji (⃗ri) − n̄(3)

ji (⃗ri)
)
d3ri. (30)

One can obtain Equation (30) with the functional
described in reference [9], but here, gatti j,eff does not con-
tain the term due to the local compressibility approxima-
tion. There is also a difference of computation between
the treatment proposed here and the previous one [9],
because here we apply the weighted function formalism
directly on the chemical potential, and not on the func-
tional itself. Here, we do not decompose the expressions
of the first and second order of the expansion of the
attractive term; we consider only the resultant attractive
contribution.
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... The coarse-grained approximation
In this approximation, we assume that the effective pair
correlation function gatti j,eff depends on the spatial position
r⃗. In local DFT, this dependence is through the local den-
sities {ρi (⃗r)}, and in non-local DFT through the weighted
densities. The coarse-grained (CG) approximation into
DFT was successfully used in various adsorption stud-
ies (for example, see [3,4]), from Percus works [18]. This
approach considers generally a weighting on the volume
of a sphere of radius σ i. This distance corresponds to the
interaction distance between two identical hard-spheres.
This way, this method is well adapted to describe pure
fluids only. To write a functional for an inhomogeneous
fluid, we use the equivalent function for the homoge-
neous limit, and we replace the variable ρbulk, i by the
function ρ̄i (⃗r), which is

ρ̄i (⃗r) = n̄(3)
ii (⃗r)

4π
3 (2Ri)3

, (31)

using the weighted density (22). This weighting is not
fully adapted to describe mixtures, because the weighting
radius is σ i = 2Ri for a specie i only, instead ofRi +Rj, that
could take into account different species i and j.Moreover,
the packing fraction ξ3 =

∑
i
4π
3 ρiRi

3 becomes η(⃗r) =∑
i
4π
3 ρ̄i (⃗r)Ri

3. Using this function η(⃗r) for an inhomo-
geneous mixture is another approximation, because the
weighting considers only the interaction distance 2Ri.

For the hard-sphere system, the idea of replacing this
volumetric weighting on interaction distance by weight-
ings on individual spheres conduced Rosenfeld [2] to
decompose the function '(Ri + Rj − r). The resulting
FMT framework is then a WDA for mixtures, using sep-
arated weights Ri and Rj. For hard-sphere systems, the
FMT free energy yields better results thanmost of the CG
versions [19].

The hard-sphere contribution to the inhomogeneous
chemical potential has been treated with the FMT. Then,
the attractive part of the potential uatti j has been treated
with the general WDA formalism defined at the begin-
ning. We assume that the main feature of density pro-
files comes from these treatments, and here, we apply
the CG approximation on the pair correlation function
only.With this approach, the aim is to limit the additional
approximation for mixtures, as this CG approximation is
not applied on all the terms of the free energy functional.

Then, the effective pair correlation function (from the
Carnahan–Starling [20] equation of state) is

gHS
i j,eff

∣∣∣
CG

=
1 − 1

2η
eff
i j

(
1 − ηeff

i j

)3 (32)

with the weighted effective density ηeff
i j = c1(λi j)η +

c2(λi j)η
2 + c3(λi j)η

3. The coefficients ck, (k= 1, 2, 3) are
the same as the ones in the precedent section. Moreover,
the compressibility is now

KHS
∣∣∣
CG

= (1 − η)4

1 + 4η + 4η2 − 4η3 + η4 . (33)

In this CG approximation, gHS
i j,eff

[
η(⃗r)

]
leads to the inho-

mogeneous chemical potential

βµatt
k (⃗r)

∣∣∣
CG

= −
∑

i

(βεik) gattik,eff (⃗r)
(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)

− 1
2

∑

i, j

(βεi j)Y (3)
i jk (⃗r) (34)

with the weighted function

Y (α)
i jk (⃗r) = n(α)

(

ρi
∂gatti j,eff

∂η

(
ν̄(3)
ji − n̄(3)

ji

)
; 2Rk ; r⃗

)

.

(35)
This function is obtained with the same methodology
used with the hard-sphere chemical potential, at the end
of Section 2.1, for which the weighted function is not
the density. The derivation of η(⃗r) leads to the weighting
radius 2Rk, and because η depends only on aweighting on
the volume, we have to consider only α = 3 forY (α)

i jk (⃗r).

... The KR-FMT approximation
Other weightings into the effective pair correlation func-
tion are conceivable. If one chooses those of the FMT,
gHS
i j,eff

[
nα (⃗r)

]
must be developed. This expression depends

on the version of the FMT. The original Rosenfeld for-
mulation [2] contains scalar and vectorial weighted func-
tions. Next, Kierlik and Rosinberg [8] proposed another
version for the hard-sphere (noted KR-FMT), equivalent
to the Rosenfeld’s one (only for the Scaled-Particle The-
ory reference [21]), with only scalar weighted densities.
The relation between the scalar and the vectorial contri-
butions in the free energy density led Yu and Wu [22]
to include a vectorial term into their version of the pair
correlation function, following Rosenfeld’s formulation
of the FMT. In the KR-FMT approximation, the use of
this correction is not justified, and so, another pair corre-
lation function must be developed.

To do so, we have changed the variables ξ 3 , ξ 2 and ξ
e f f
i j

from the bulk expression (27) by n3 (⃗r), n2 (⃗r) and n
e f f
i j (⃗r)

and obtained

gHS
i j,eff

∣∣∣
KR−FMT

= 1
1 − neffi j

+
[ Ri R j

Ri + Rj

n2
3n3

] 3neffi j + (neffi j )2

(1 − neffi j )2
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+
[ Ri R j

Ri + Rj

n2
3n3

]2 2(neffi j )3

(1 − neffi j )3
(36)

with neffi j = c1(λi j)n3 + c2(λi j)n32 + c3(λi j)n33. Like-
wise, we consider KHS[{nα (⃗r)}] from its bulk expression
(29), obtained with the White-Bear II FMT.

The compact expression resulting for the chemical
potential is

βµatt
k (⃗r)

∣∣∣
KR−FMT

= −
∑

i

(βεik) gattik,eff (⃗r)
(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)

− 1
2

∑

i, j

(βεi j)

3∑

α=0
Z(α)
i jk (⃗r) (37)

with the weighted function

Z(α)
i jk (⃗r) = n(α)

(

ρi
∂gatti j,eff
∂nα

(
ν̄(3)
ji − n̄(3)

ji

)
; Rk ; r⃗

)

.

(38)
Here, all the weighting (α = 3, 2, 1, 0) are considered with
Z(α)
i jk (⃗r) to computeµatt

k (⃗r). Then, we notice that the func-
tional gHS

i j,eff of {nα (⃗r)} is derived and leads to the weight-
ing radius Rk into Z(α)

i jk (⃗r).
Another point has to be highlighted. The hard-sphere

pair correlation function must be consistent with the
free energy density for hard-spheres (such as it must be
consistent with the pressure). The different approxima-
tions presented should not satisfy this consistency in the
same way. The study of the sum rules in the following
approaches some aspects of this question.

3. Sum rules

Sum rules establish relations between the inhomoge-
neous fluid microstructure, through the density profiles,
and thermodynamical properties, such as pressure or sur-
face tension. To check if these rules are verified, the rela-
tion between an inhomogeneous phase near a wall and
a bulk homogeneous phase, at the packing fraction η =
4π
3 ρbulkR3 has been considered.
To do so, contrarily to the hard-sphere fluid, various

parameters of a square-well fluid, related to the attrac-
tive part, must be specified. This way, the following rel-
ative errors on sum rules are quantitative only for a par-
ticular square-well fluid, but the global study informs
about general tendencies of the different approximations
evoked. Indeed, the orders of magnitude of the square-
well fluid parameters are chosen to correspond to those
of the SAFT-VR equation [7] (for themonomer contribu-
tion of molecules in standard conditions). For the study
of a pure square-well fluid, kBT/ε = 2 and λ = 1.5 were

respectively chosen for the well depth and the attractive
range.

We have applied to the square-well fluid the approach
and definitions detailed in the Roth’s review of FMT
[6] for hard-spheres. The thermodynamic quantities are
defined for one planar wall, normal to the axis z. Com-
putations of density profiles are done by considering one
hardwall at z= 0, describing a positionwhich is indepen-
dent of the size of the molecules. The accessible positions
of the center of a molecule of radius Ri are for z ! Ri

+.
Finally, thermodynamic quantities relative to the adsorp-
tion are presented below for one wall. To do so, the dis-
tance Lz is defined as the normal distance from the left
wall to a point in the bulk phase. Thus, this distance will
be used in definitions of thermodynamic quantities rela-
tive to only one wall.

3.1. Contact theorem

The contact theorem traduces the mechanical equilib-
rium between the fluid and the wall through thermody-
namic properties. Considering only one hard wall, the
contact theorem establishes the relation between the bulk
pressure P and local densities at contact ρ i(z=Ri

+) against
the wall. For a planar hard wall, the theorem is simplified
to

βP =
∑

i

ρi(z = Ri
+) , (39)

because the summed quantity is reduced to the density at
contact.

By solving Equation (3) for the four different approx-
imations of the pair correlation function presented, we
obtain different density profiles and different values of
the density at contact against the wall. Moreover, pres-
sure is computedwith the equation of state of eachmodel,
obtained from the bulk limit of the free energy. Then, the
validation of the sum rule shows an internal consistency
of the theory and its approximations. It does not inform
if the absolute computed values βP and"iρ i(z= Ri

+) are
correct or not, because here, they are not compared with
simulation data (see the following sections for compar-
isons). Here, the comparison is relative and we represent
the relative error between the summed quantity "iρ i(z=
Ri

+) and the thermodynamical quantity βP,

errcontact = βP −
∑

i ρi(z = Ri
+)

βP
. (40)

Relative errors on the contact theorem with the differ-
ent approximations are presented in Figure 1. With the
MF approximation, the relative error is zero, considering
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Figure . Relative errors on the contact theorem of the pure
square-well fluid studied. Dotted, dash, dash-dotted and solid
lines represent, respectively, the result forMF, bulk, CG andKR-FMT
approximations.

the numerical precision of the computations, which sat-
isfies the sum rule. With the CG and the KR-FMT pair
correlation function, the error is not zero, but is still infe-
rior to 3.5%, at η < 0.4. At higher densities, the error
with the KR-FMT approximation decreases, contrary to
the CG one. Except in this last case, we consider that
these approximations as a whole are acceptable. On the
other hand, the Bulk approximation for the pair correla-
tion function presents important values for errcontact (up
to 15%), indicating that it does not satisfy the contact the-
orem at all.

3.2. Gibbs adsorption theorem

The Gibbs adsorption theorem establishes the relation
between the excess adsorbed quantity (relative to the bulk
one) and the variation of the surface tensionw.r.t. the bulk
chemical potential. The relation corresponds to

−
(
dγ
dµi

)

T,V
=

∫ (
ρi(z) − ρbulk,i

)
dz. (41)

where A stands for the area related to the surface of the
wall, and V is the volume against this wall, defined with
the normal distance Lz, as Lz = V/A. With this notation,
the surface tension (for one wall) is computed from γ =
(! + PV)/A, with Equation (1) for the grand potential !.
For a hard planar wall, in one dimension, the surface ten-
sion becomes

γ = F1D −
∑

i

µi

∫ Lz

0
ρi(z) dz + PLz (42)

where F1D = F/A is the one-dimensional free energy.
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Figure . Relative errors on the Gibbs adsorption theorem of the
pure square-well fluid studied.

As for the first sum rule, we consider the relative error
between the summed quantity #(ρ i(z) − ρbulk, i) dz and
the thermodynamic quantity −

(
dγ
dµi

)

T,V
,

errGibbs =
−

(
dγ
dµi

)

T,V
−

∫ (
ρi(z) − ρbulk,i

)
dz

−
(

dγ
dµi

)

T,V

. (43)

Relative errors on the Gibbs adsorption theorem with
the different approximations are presented in Figure 2.
errGibbs is zero with the MF approximation, considering
the numerical precision of the computations. For other
approximations, the global conclusions are the same than
those of the first sum rule: with the Bulk pair correlation
function we observe significant and irregular errGibbs (up
to 6%); with the CG approximation the relative error is
small for η < 0.4 (less than 1%) and increases at higher
densities; with the KR-FMT approximation the difference
is less than 1% for all densities. When the pair correlation
function is different from1, the use of various approxima-
tions (Barker–Henderson expansion and weights) leads
to different adsorbed quantities, according to the route
(l.h.s. or r.h.s. term of the Equation (41)), and the sum
rule is not fully satisfied.

This highlights the importance of the consistency
between the (effective) pair correlation function gHS

i j,eff,
the free energy density )SD and the bulk pressure P.
However, the MF approximation satisfies the sum rule,
whereas the consistency between)SD or Pwith the func-
tion gHS

i j,eff = 1 is nonexistent in this case. We interpret
this point by considering that the sum rule does not test
directly and totally the consistency between these func-
tions. It only shows a consistency between the density
profile and the derivative of the surface tension w.r.t. the
bulk chemical potential, computed from the same gHS

i j,eff,
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Figure . Excess adsorption quantity of the pure square-well fluid
studied.

i.e. with the same degree of approximation. Here, the val-
idation of the sum rule does not correspond to a higher
consistency between gHS

i j,eff and )SD, compared to other
models, but corresponds to a stronger approximation.

According to the choice of the pair correlation func-
tion, the error on the sum rule is acceptable or not.
Another way to show the importance of these degrees of
approximation is to compute the excess adsorbed quan-
tity (absolute, and not only related to the Gibbs sum rule).
Because of the definition of Lz, the surface tension is
positive and the excess adsorption is negative (see refer-
ence [6] for details). In Figure 3, we represent the excess
adsorption computed with the integral formulation, both
for theory and simulation,

3i =
∫ (

ρi(z) − ρbulk,i
)
dz. (44)

This figure clearly shows that the excess adsorption
is strongly underestimated (in absolute value) with the
MF approximation, even at low densities. As considered
above, even if the sum rules are satisfied in this case, the
approximation is too strong to respect some other ther-
modynamic considerations. With the Bulk approxima-
tion, the excess adsorbed quantity is underestimated, but
much less than for the MF approximation. However, CG
and KR-FMT approximations present the same values for
η < 0.3, with a very good agreement with the simula-
tions. At higher densities, the CG approximation under-
estimates the excess adsorption quantity, whereas the KR-
FMT approximation overestimates it.

If there is a difference between the adsorbed quantity
predicted by the theory and the simulation, there is also
a difference between the corresponding density profiles,
used in Equation (44). But on the contrary, two different
profiles can lead to the same adsorbed quantity, so one

has to check the density profiles as well to obtain more
information on these square-well fluid microstructures.

4. Density profiles

4.1. Density profiles of a pure square-well fluid

We represent density profiles at low, medium and high
densities (respectively at η = 0.15, 0.30 and 0.45) for the
four approximations compared in Section 3. The square-
well pure fluid parameters are fixed as before and only a
hard planar wall is placed at z = 0. For these systems, the
density profiles are compared to newNVT (i.e. at constant
Number of particules, Volume and Temperature) Monte
Carlo simulations computed at the same thermodynami-
cal conditions.

Figure 4 represents the density profiles at η = 0.15,
0.30 and 0.45, respectively. The MF approximation over-
estimates densities at each point, in particular near the
wall. While simulation and other models show a density
smaller than the bulk density at η = 0.15 and z < 1.5σ ,
the MF approximation leads to positive values, such as at
higher densities. High value of density at the contact dis-
tancewith thewall (at z= 0.5σ ) is the typical behaviour of
the purely repulsive hard-sphere fluid. With an attractive
part in the potential, a difference is observed at low densi-
ties: the attraction betweenfluidmolecules has then a pre-
vailing influence on the fluid microstructure. At higher
densities, more molecules are pushed against the hard
wall, and this behaviour then is imposed over the attrac-
tion between molecules. The resulting profiles are closer
to the hard-sphere fluid ones in this case.

At η = 0.15 (Figure 4(a)), as shown in the refer-
ence [9], the main behaviour of the density profiles is
recovered with the Bulk approximation on the pair cor-
relation function, with a good agreement with simula-
tion results. However, small deviations are observed close
to the wall, contrarily to the profiles obtained with the
CG and the KR-FMT approximations, which present an
excellent agreement with simulation at any distance from
the wall. At η = 0.3 (Figure 4(b)), secondary layers are
a bit displaced and their amplitudes change also accord-
ing to the approximation made. The microstructures are
similar, with a convergence to the bulk density far from
the wall. The models are qualitatively good, even if some
small differences appear with simulation results.

However, at η = 0.45 (Figure 4(c)), MF, Bulk and
CG approximations generate wrong density profiles, with
strong oscillations instead of a convergence to the bulk.
The positions of maxima from the wall are overestimated
and they correspond to multiples of the weighting radius
σ , for the CG approximation. The latter presents the
worst prediction for the amplitude of the layers, and con-
duces to the underestimation of the adsorbed quantity, as
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Figure . Density profiles of the pure square-well fluid studied.
The variable z represents the normal distance to the left hard pla-
nar wall placed at z= . (a) ηbulk = .; (b) ηbulk = .; (c) ηbulk =
..

seen above (see Figure 3). The result obtained with the
KR-FMT approximation at high density is different from
the others. It presents a non-physical peak at the radius
of the weighting R (and multiples), underestimates the
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Figure . Density profiles of the binary square-well fluid studied.
Density profiles for the square-well fluid studied. The variable z
represents the normal distance to the left hard planar wall placed
at z = . (a) Relative density profile of the molecule ; (b) relative
density profile of the molecule .

amplitude of real peaks, but eventually converges to the
bulk density.

Generally speaking, the position of the maxima
depends on the weighting radius used in the differ-
ent approximations. According to the system studied,
some authors have introduced an adjustable parameter
to fit the density profiles (see [5] for a recent example).
Here, we do not follow this approach, and use only the
square-well parameters for all the four approximations, in
order to compare them. To conclude, the weighted term(
ν̄(3)
ik (⃗r) − n̄(3)

ik (⃗r)
)
that characterises these DFT versions

is responsible for the main structure of the fluid close to
the wall. But, in order to improve the MF approximation
estimations, one must add weighted densities into the
pair correlation function. Important differences between
these four DFT versions have been shown at very high
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density. In this case, the choice of the approximation leads
to different qualitative and quantitative results.

4.2. Density profiles of a square-well binarymixture

If the square-well fluid model is not correct for pure flu-
ids, it will be presumably worse for mixtures, because of
the additional hypothesis on mixing rules present in all
the terms of the free energy functional. This is why the
approximations considered in this work are tested only at
low density, for ηtotal = 0.15, where the four models are
qualitatively correct. Themolecule of specie 1 in the mix-
ture has the same parameters as in Section 4.1, i.e. kBT/ε1
= 2 and λ1 = 1.5.We define the parameters of a molecule
of specie 2, smaller and less attractive than themolecule 1,
with R2 /R1 = 0.75, ε2 /ε1 = 2/3 and λ2 = 1.3. The molec-
ular bulk fractions are x1 = 0.75 and x2 = 0.25. The other
variables related to the system and the simulations are the
same as that in the previous section.

The conclusions that can be drawn from the density
profiles (Figure 5) for each approximation are the same
than for pure fluids. The MF approximation presents
important differences with the simulations near the
wall, while the other approximations give better results.
Because molecule 2 is less attractive than molecule 1, its
profile resembles more of a hard-sphere profile, with a
maximum at the wall contact distance. The selectivity

Selectivity2/1(z) =
(

ρ2(z)
ρ1(z)

) / (
ρbulk,2

ρbulk,1

)
(45)

provides another representation to test the quality of
the mixture description. Figure 6 shows an important
difference with simulations for the selectivity computed
in the MF approximation, and some little differences
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Figure . Selectivity of the specie w.r.t. the specie . The variable
z represents the normal distance to the left hard planarwall placed
at z= .

for the other approximations. The approximations with
weighted densities (CG and KR-FMT) present similar
results, with a very good global agreement with simula-
tion data.

5. Conclusion

We have compared four inhomogeneous square-well
fluidmodels, only distinct from the approximation on the
pair correlation function gattik,eff (⃗r), present in the attractive
free energy term of the DFT. Various criteria can be con-
sidered to select or validate an approximation, depending
on fundamental interests or for a specified application.
In this case, the considered selection criteria are the ful-
fillment of the following conditions: verification of sum
rules and accuracy in the prediction both adsorbed quan-
tity and density profiles . Even if a model satisfies one
of these criteria, it may fail to describe others, so they
can be considered supplementary to each other and in
no case redundant. Different conclusions can be drawn
according to the bulk density value. In summary, the MF
approximation satisfies sum rules but leads to the worst
prediction of excess adsorption and density profiles. The
Bulk approximation provides good qualitative results on
density profiles but does not satisfy sum rules. The CG
approximation presents good results for all the criteria
except for the highest densities tested (η > 0.4), where
the model fails. The KR-FMT approximation leads to the
best results on sum rules for a model with a gattik,eff (⃗r) dif-
ferent to unity, but reveals some non-desired peaks in
the density profile at the highest densities. We recall that
the quantitative results obtained here are specific to the
square-well fluid studied, but the conclusions will not
change with other fluid parameters and are qualitatively
general.

According to this study, one can attach more impor-
tance to any of these criteria depending on the specific
objectives intended for the model development and pur-
pose. They can serve as references in the development of
new DFT models, eventually with other criteria, accord-
ing to the objective of the work and the accuracy desired.
In particular, MF is a good first approximation for a lot
of thermodynamic models [19]; and at low and medium
densities, differences between CG and KR-FMT results
for sum rules and density profiles are negligible, indicat-
ing that both of these approximations can be used to com-
pare experimental adsorbed quantities and predictions
from the theory [23].
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