Abstract : This paper describes an upgraded version of the SemIndex prototype system for semantic-aware search in textual SQL databases. Semantic-aware querying has emerged as a required extension of the standard containment keyword-based query to meet user needs in textual databases and IR applications. Here, we build on top of Semindex, a semantic-aware inverted index previously developed by our team, to allow semantic-aware search, result selection, and result ranking functionality. Various weighting functions and intelligent search algorithms have been developed for that purpose and will be presented here. A graphical interface was also added to help end-users write and execute queries. Preliminary experiments highlight SemIndex querying effectiveness and efficiency, considering different querying algorithms, different semantic coverages, and a varying number of query keywords.
This paper describes an upgraded version of the SemIndex prototype system for semantic-aware search in textual SQL databases. Semantic-aware querying has emerged as a required extension of the standard containment keyword-based query to meet user needs in textual databases and IR applications. Here, we build on top of Semindex, a semantic-aware inverted index previously developed by our team, to allow semantic-aware search, result selection, and result ranking functionality. Various weighting functions and intelligent search algorithms have been developed for that purpose and will be presented here. A graphical interface was also added to help end-users write and execute queries. Preliminary experiments highlight SemIndex querying effectiveness and efficiency, considering different querying algorithms, different semantic coverages, and a varying number of query keywords.
Semantic Queries; Inverted Index; Semantic Network; Textual Database; Semantic Search; Disambiguation ;
XML