Semantic Web Datatype Inference: Towards Better RDF Matching

Abstract : In the context of RDF document matching/integration, the datatype information, which is related to literal objects, is an important aspect to be analyzed in order to better determine similar RDF documents. In this paper, we propose a datatype inference process based on four steps: (i) predicate information analysis (i.e., deduce the datatype from existing range property); (ii) analysis of the object value itself by a pattern-matching process (i.e., recognize the object lexical-space); (iii) semantic analysis of the predicate name and its context; and (iv) generalization of numeric and binary datatypes to ensure the integration. We evaluated the performance and the accuracy of our approach with datasets from DBpedia. Results show that the execution time of the inference process is linear and its accuracy can increase up to 97.10%. \textcopyright 2017, Springer International Publishing AG.
Type de document :
Communication dans un congrès
Web Information Systems Engineering - WISE 2017 - 18th International Conference, Puschino, Russia, October 7-11, 2017, Proceedings, Part II, Oct 2017, Puschino, Russia. Springer Verlag, 10570 LNCS, pp.57-74, 2017, 〈10.1007/978-3-319-68786-5_5〉
Liste complète des métadonnées

https://hal-univ-pau.archives-ouvertes.fr/hal-01909097
Contributeur : Julien Rabaud <>
Soumis le : mardi 30 octobre 2018 - 18:39:06
Dernière modification le : mardi 30 octobre 2018 - 18:39:07

Identifiants

Collections

Citation

Irvin Dongo, Yudith Cardinale, Firas Al Khalil, Richard Chbeir. Semantic Web Datatype Inference: Towards Better RDF Matching. Web Information Systems Engineering - WISE 2017 - 18th International Conference, Puschino, Russia, October 7-11, 2017, Proceedings, Part II, Oct 2017, Puschino, Russia. Springer Verlag, 10570 LNCS, pp.57-74, 2017, 〈10.1007/978-3-319-68786-5_5〉. 〈hal-01909097〉

Partager

Métriques