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Abstract. With the growth of the Internet of Things (IoT), sensor-
based systems deal with heterogeneous sources, which produce hetero-
geneous observations of disparate quality. Since network QoS is rarely
sufficient to expertise Quality of Observation (QoO), managing such di-
versity at the application level is a very complex task and requires high
levels of experience from application developers. Given this statement,
this paper proposes a generic framework for QoO-based autonomic adap-
tation within sensor-based systems. An abstract architecture is first in-
troduced, intended to bridge the gap between sensors capabilities and
application needs thanks to the Autonomic Computing paradigm. Then,
the framework is instantiated and practical considerations when imple-
menting an autonomous sensor-based system are given. We illustrate
this instantiation with concrete examples of sensor middlewares and IoT
platforms.

Keywords: Internet of Things, sensors, observations, Information Qual-
ity, adaptation, Autonomic Computing, Service-Oriented Architectures.

1 Introduction

With the accelerated development of Internet of Things (IoT), more and more
information sources are available to applications, generally through intermediate
sensor-based systems such as sensor middlewares [9], [15] or IoT platforms [25].
Whether physical or virtual, sensors represent a huge opportunity for collecting
and processing information to provide enhanced services and improve the quality
of life within cities.

Only few sensor-based systems have been designed to adapt their behavior
according to application needs. Instead, these systems usually define their own
metrics before delegating the management of observation quality to end applica-
tions. However, this adaptation strategy has several drawbacks since it assumes
that application developers have the knowledge to understand those metrics and
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their meaning. Furthermore, some metrics could be missing or poorly imple-
mented.

On one hand, sensor-based systems deal with various sensors, which con-
stitute as many heterogeneous sources that produce observations of disparate
quality. These systems receive and process observations to enrich them with ad-
ditional information or make them more meaningful for end applications. On
the other hand, applications may have specific observation needs, in particular
concerning the Quality of Observation (QoO). These needs, which differ from
one application to another, may be dynamic and therefore vary over time. For
instance, two applications may ask for the same kind of observations (temper-
ature, wind, etc.) but may not require the same granularity (e.g., frequency,
coverage).

In order to bridge the gap between heterogeneous observations and application-
specific QoO needs, we envision dynamic adaptation with only few interventions
from developers/experts. By following the Autonomic Computing [12] approach,
we propose sensor-based systems to play the role of autonomic mediators that
adapt their behavior to fit application needs thanks to the definition of Service
Level Agreements (SLAs). In this paper, a generic framework for QoO-based au-
tonomic adaptation will be presented. This framework, suitable to a large num-
ber of sensor-based systems, consists in two parts: i) an abstract architecture
composed of different layers for observation consumption and ii) a description of
five autonomic maturity levels from a sensor perspective.

The remainder of this paper is organized as follows. Section 2 introduces
the required background. Section 3 presents our contribution which consists in a
generic framework. Section 4 focuses on framework instantiation, giving concrete
implementation examples from sensor middlewares and IoT platforms. Finally,
we present existing and relevant work in Section 5 before concluding and giving
some research perspectives in Section 6.

2 Required Background

This Section aims to give the reader the required background about sensor ob-
servations, QoO and the Autonomic Computing paradigm. These notions are
the three foundations of the framework that will be described later in Section 3.

2.1 Terminology for Sensor Observations

Sensor-based systems provide observations to applications. Each observation
may be considered as the representation of a physical-observed phenomenon (the
temperature of a place, a person that enters a room, etc.) or a virtual-occurred
event (a new tweet from someone, an incoming e-mail, the availability of a new
software update, etc.).

Previous studies have proposed taxonomies to denote the different types of
observations that applications can consume. Indeed, the same phenomenon or
event can be reported in different ways, including more or less details about
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the unit of the measure, sensor type, location, etc. As a matter of fact, these
taxonomies use ladder representations to denote the different observation types.
For instance, in 2013, the National Institute of Standards and Technology (NIST)
conducted a sensor ontology literature review [7] that introduced “raw data”,
“primitive” and “object” perception levels. More recently, Sheth has proposed
the “data, information, knowledge, and wisdom (DIKW) ladder” for the IoT [23].
Such taxonomies aim to estimate the level of complexity required to process and
“understand” them by observation consumers (applications or users).

In this paper, we only envision applications as observation consumers. Reusing
existing terminologies, we define three levels for observation consumption that
we define as follows, from the most basic to the most complex:

Sensor Raw Data The first observation level corresponds to unprocessed ob-
servations coming from sensors. At this level, these observations are encoded
in the key/value form and do not contain additional information. We denote
them as sensor Raw Data (e.g., {sensor_id: 34, value: 20}).

Sensor Information The second observation level corresponds to sensor In-
formation. Sensor Information is sensor Raw Data that has been processed
or enriched with additional Context information [17] (e.g., {sensor_id:

34, value: 20, unit: Celsius, location: (43.564509, 1.468910),

accuracy: 0.8}).
Sensor Knowledge The third observation level is reached with the use of

semantics. By implementing a semantic annotation process, sensor-based
systems are able to model domain-specific observations and thus to deal
with machine-understandable information. We denote by sensor Knowl-
edge any semantic-based observation representation (e.g., {sensor_type:

temperature, value: comfort, location: room3, accuracy: good}).

These three observation types mainly refer to observation representation
(broadly speaking their content and their format). In the next Section, we in-
troduce attributes to characterize them more precisely and assess their intrinsic
quality.

2.2 Quality of Observation

Since the goal of our framework is to provide application-specific high-quality ob-
servations, we present some popular quality dimensions and examples of metrics,
which may later serve as a basis for SLAs’ definition:

Data Quality (DQ) In this work, we use DQ notion to refer to the intrinsic
quality of sensor Raw Data. Broadly speaking, it can be seen as the distance
between the sensed value (the observation) and the corresponding event (the
occurred event). Quite complex to assess, DQ is mainly impacted by the
sensor device quality and performances of the underlying network.

Quality of Information (QoI) In [2], Bisdikian et al. define QoI as “the col-
lective effect of information characteristics (or attributes) that determine the
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degree by which the information is (or perceived to be) fit-to-use for a pur-
pose”. Some examples of QoI attributes are latency, reputation and spatio-
temporal Context. In a sensor context, these metrics may be particularly
useful for an application to assess more accurately how fit-for-use sensor
Information is.

Quality of Context (QoC) According to Dey, Context can be defined as “any
information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interac-
tion between a user and an application, including the user and applications
themselves” [6]. QoC denotes Quality of Information applied to Context [3].

Quality of Knowledge (QoK) Some sensor-based systems, such as Semantic
Sensor Webs [24], use ontologies to model sensor observations and describe
the capabilities of their sensors. This semantic representation allows query
inference and high-level reasoning on sensor Knowledge. QoK assesses the
quality of the ontology-based modelisation. Some metrics (such as complete-
ness, coverage and ease to use) have been proposed for Knowledge manage-
ment systems [20] and may be applied to sensor Knowledge.

Quality of Service (QoS) QoS has been defined in the E.800 recommenda-
tion [10] by the ITU-T. Although this definition encompasses above quality
dimensions, it is not the case in practice. Indeed, the term “Quality of Ser-
vice” generally refers to packet transportation from source to destination
within the network. As a matter of fact, the set of QoS metrics is often re-
stricted to bandwidth, delay, jitter and loss probability. We will denote this
quality dimension as “network QoS” in the rest of this paper.

Above quality dimensions may be used to characterize the general quality of
sensor observations. Depending on sensors, applications and use cases, it may
be relevant to use many of them to improve this characterization process. For
instance, using both network QoS and QoI, one can better understand if some
outdated observations are the result of poor network performances or due to a
sensor sampling rate too low. In this paper, independently of their consump-
tion level, we use the generic term “Quality of Observation” (QoO) to denote
observation quality that sensor-based systems provide to upper applications.

2.3 Autonomic Computing Paradigm

Autonomic Computing has been defined by IBM as the ability of systems to
“manage themselves given high-level objectives from administrators” [12]. Since
it makes a clear distinction between goals and means, the Autonomic Computing
paradigm is commonly considered as a convenient way to build interoperable,
evolving and easy-to-use systems.

Autonomic systems are a set of Autonomic Elements. Each Autonomic El-
ement is composed of one or many Managed Elements controlled by a single
Autonomic Manager. This entity continuously monitors the internal state of its
different Managed Elements; then analyses this information; and finally takes ap-
propriate decisions based on both its knowledge base and high-level objectives.
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At last, these decisions are converted into actions and transmitted to appropri-
ate Managed Elements for execution. These different steps form the MAPE-K
adaptation control loop (Monitor, Analyse, Plan, Execute, Knowledge base), also
denoted as “MAPE-K loop” in the rest of this paper.

Autonomic systems relieve end-users to manually implement logic to comply
with their needs. Instead, users express their goals, leaving to one or many
Autonomic Managers the task of managing the different Autonomic Elements.
This process implements the required self-properties. In [12], IBM has identified
four self-* fundamental adaptation properties for autonomic systems, namely
self-configuration, self-optimization, self-healing and self-protection.

3 Generic Framework Proposal

In this Section, we present our generic framework for quality-based adaptation.
This framework describes an abstract architecture and describes five autonomic
maturity levels for sensor-based systems.

3.1 Abstract Architecture

Figure 1 depicts a high-level representation of a sensor-based system providing
QoO-based adaptation. Inspired by the representation of standard IT proto-
col stacks, it shows the different flows that exist between components: while
solid arrows represent observation consumption flows, dashed arrows indicate
adaptation-related flows (control, management, etc.).

As previously stated, we only consider three different types of observations
that applications can consume. We denote as “Raw Data layer”, “Information
layer” and “Semantic layer” the layers at which applications can consume Raw
Data, Information or Knowledge observations, respectively. In fact, one may see
each layer as an abstract service provider offering collection and digitization,
characterization and semantic annotation to upper layers, respectively. In the
following, we give more details about these three layers:

Raw Data layer The Raw Data layer deals with observations that are pro-
duced by sensors. Raw observations can either refer to phenomena (for phys-
ical sensors) or events (for virtual sensors). This layer offers collection and
digitization of these observations to upper layers. Regarding physical sensors,
the digitization process consists in the translation of observations from the
physical world into the digital world (e.g., using sensor adapters/wrappers).

Information layer The Information layer offers Raw Data characterization.
The fact of annotating sensor Raw Data with Context information adds
value to it since end applications can then use this Context information to
assess QoO. For instance, sensor provenance, spatio-temporal information
and sensor confidence level are some concrete Context attributes that can
be added to sensor Raw Data.
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Fig. 1. Abstract architecture for application-specific QoO adaptation. AM: Autonomic
Manager, SLAs: Service Level Agreements.

Semantic layer The Semantic layer offers semantic-based annotation of sen-
sor Information. The use of semantic-based representations (in general using
ontologies) allows applications to consume machine-understandable Knowl-
edge. Since ontologies are conceptual representations of a specific domain,
we denote as Knowledge any semantic-based observation representation. Re-
member that this kind of observations allows high-level inference and rea-
soning.

According to the proposed architecture, applications can customize the be-
havior of the sensor-based system by expressing needs through the adaptation
API. For instance, a classic application for environmental monitoring may be less
sensitive to delay than another one for military battlefield management. There-
fore, these two applications can ask for the same kind of observations (tempera-
ture, wind, etc.) by specifying different QoO levels (with the definition of SLAs).
Then, these SLAs are routed to the appropriate Autonomic Manager(s). Each
Autonomic Manager (AM) should take into account these application needs and
add them to its Knowledge base. When the QoO needs are not or no longer
fulfilled, the Autonomic Manager will enforce the required corrective actions to
be implemented by the corresponding layer. In addition to possibly consuming
observations at three different levels, applications can also subscribe to feed-
back (statuses of the different layers, statistics of the MAPE-K loops, QoO met-
rics, etc.) sent by the autonomic sensor-based system.

This framework considers each observation layer as a Managed Element, man-
aged by its own Autonomic Manager for scalability reasons. To adapt QoO ac-
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cording to application needs, we assume that each observation layer implements
the required adaptation mechanisms. Some examples of these mechanisms are
observation Filtering, Formatting, Fusion, Caching or Machine Learning. Please
note that the study of these mechanisms is out of the scope of the framework.

3.2 Autonomic Maturity Levels for Sensor-based Systems

With the presence of Autonomic Managers and adaptation-related flows, our
abstract architecture falls within the Autonomic Computing paradigm. Inspired
by the work of IBM on Autonomic Computing [11], we adapt and describe five
maturity levels to quantify how autonomous an existing sensor-based system is:

Basic (level 1) At this level, no customization is available for applications.
The entire behavior of the system is hard-coded by developers during the
design phase. The monitoring of the system is done manually by developers
who also replace or update different elements and components accordingly.

Managed (level 2) At this autonomic level, adaptation is based on predefined
rules written by developers or domain experts (e.g., meteorologists). These
rules are simple (if value < 0 then drop(wind_speed_observation) for in-
stance) and are generally written by a skilled person.

Predictive (level 3) Predictive behavior is reached with the implementation
of reasoning processes in some components of the sensor-based system. These
processes can consist in Fusion, Machine Learning, etc. but they must not
take into account any macroscopic goal. At this maturity level, components
are generally selfish entities.

Adaptive (level 4) Adaptive behavior is characterized by the definition of
SLAs. SLAs mostly correspond to the definition of application profiles with
specific QoO needs. At this maturity level, components take into account
SLAs to self-adapt their local behavior. By implementing such mechanisms,
a sensor-based system can be seen as a system driven by a macroscopic goal.

Autonomic (level 5) The last maturity level is the autonomic one. A sensor-
based system may be considered as autonomic when its behavior is driven by
the expression of business rules coming from end applications. Such system
automatically derives appropriate SLAs from these rules and routes them to
its different Autonomic Elements. Then, these autonomic entities accordingly
adapt their behavior and collectively fulfill application needs.

To fully take advantage of the Autonomic Computing paradigm, we recom-
mend to instantiate our framework to build adaptive or autonomic sensor-based
systems (level 4 or 5) with definition of SLAs. These SLAs should include both
observation needs (e.g., {type: temperature, level: information}) and the
QoO level required by the application (e.g., {timeliness: 60, trust: 0.8}).

Since it is composed of generic components (conceptual layers), this frame-
work can be adapted to a large number of platform-specific implementations. For
example, one could imagine a sensor-based system where sensors semantically
annotate their observations. In this case, the Sensor, Raw Data, Information and



8 Antoine Auger, Ernesto Exposito, and Emmanuel Lochin

Semantic layers would be only one. Regarding adaptation, our framework is also
generic about the chosen autonomic maturity level, the SLAs definition and the
available adaptation mechanisms.

4 Framework Instantiation

In this Section, we focus on practical considerations when implementing an au-
tonomous sensor-based system. QoO metrics, mediation and SLAs are required
by our framework in order to provide application-specific QoO adaptation. We
illustrate each of these features by giving concrete examples of existing sensor-
based systems. These examples aim to instantiate our framework and validate
the abstract architecture previously introduced.

4.1 QoO Metrics Definition

In Section 2, we have seen that numerous quality dimensions may be considered
to derive metrics and define new SLAs.

Some sensor-based systems define their own custom QoO metrics. For in-
stance, the MASTAQ middleware [9] proposes “standard deviation” and “confi-
dence level” as QoO metrics while MiddleWhere [19] defines “resolution”, “con-
fidence” and “freshness” metrics to assess the quality of location information.
Other sensor-based systems use frameworks to define QoO metrics. For instance,
INCOME [15] is a QoC-based middleware for Context distribution. It allows
Context consumers to express SLAs according to their QoC needs. The distribu-
tion of Context information is then performed according to these needs. In order
to model heterogeneous QoC metrics, INCOME uses the QoCIM framework [14].

Although it allows finer metric tuning, defining custom metrics may decrease
the system interoperability. Indeed, a simple name is rarely sufficient to under-
stand how a metric is computed or how it should be used. As a result, sensor-
based systems that define their own metrics must provide adequate documenta-
tion, which details and clarifies the metrics used to avoid any ambiguities.

4.2 Mediation

Mediation feature has gained attention with Service-Oriented Architectures. A
Service-Oriented Architecture (SOA) is an architectural framework for building
software systems based on distributed services which may be offered by different
service providers. SOA software architectures are based, among other things,
on the key concepts of service, service provider and service consumer [13]. A
service is a well-defined and self-contained function or functionality offered by a
service producer. Service consumers are the entities that make use of the services
provided. Sometimes, the use of a service must respect a SLA, which specifies
the purpose, functionalities, constraints and usage of the service.

Sensor-based systems often play the role of mediators, bridging the gap be-
tween sensors and applications. Even if all sensor-based systems are not built
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following SOA framework, the underlying sensors may be considered as “observa-
tion providers” while upper applications can be seen as “observation consumers”.
In some cases, it may occur that several sensors have similar capabilities. Al-
though they offer the same kind of observation, they may not offer the same QoO
level. To optimise resources, some sensor-based systems only select a subset of
service providers that are sufficient to fill customer needs. This mechanism is
called sensor composition/selection and it has gained popularity with Seman-
tic Web Services. For instance, in [18], Perera et al. propose CASSARAM, a
Context-aware tool to select an optimal subset of sensors according to specific
QoO attributes (availability, accuracy, etc.).

Implementation choices have an effect on mediation feature. While a SOA-
based system can rely on a service bus playing the role of mediator, other archi-
tectures (such as microservice-based architectures) should implement their own
mediation mechanism.

4.3 Application Needs and Sensor Capabilities

In order to provide adaptation, our abstract architecture relies on the expression
of application needs. This requirement supposes that i) applications must be
able to express their needs regarding observations and ii) sensors must be able
to express their capabilities and describe the characteristics of the service that
they provide.

To cope with these challenges, several sensor-based systems have used se-
mantics, and in particular ontologies, to model sensor observations and de-
scribe the capabilities of their sensors. Ontology-based representation involves
the definition of concepts and their relationships. Using semantics for observa-
tion modeling corresponds to transform sensor Raw Data or sensor Information
into machine-understandable Knowledge. Within semantic-based systems, sen-
sors can also express their capabilities in a semantic way (what is their type,
their sampling rate, their units, etc.).

Numerous sensors and observations ontologies have been developed, creat-
ing a need for standardisation. Between 2009 and 2011, the Semantic Sensor
Network Incubator Group3 of the W3C initiated a standardisation process. Af-
ter reviewing 17 sensors and observations ontologies, they identified the most
relevant concepts and developed the Semantic Sensor Network (SSN) ontol-
ogy [5]. SSN ontology has been reused within CASSARAM middleware [18] for
instance. In CASSARAM, sensors are semantically described using an extended
SSN ontology while observations are semantically annotated with Context. Fi-
nally, OpenIoT project [25] also extends SSN ontology to generalize the notion
of sensor, supporting both physical devices and virtual sensors.

Ontologies are efficient to build extensible, reusable and interoperable sys-
tems. The W3C SSN ontology is currently one of the most popular standard
within sensor-based systems to both represent observations and describe sensor
capabilities.

3 http://www.w3.org/2005/Incubator/ssn/
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5 Related Work

QoS within Wireless Sensor Networks has been largely investigated [4]. Studies
generally present network QoS as a way to improve general information qual-
ity within WSNs. By contrast, this assumption does not longer holds for other
sensor-based systems such as IoT platforms. Indeed, within these observation-
centric systems, network QoS is rarely sufficient to ensure observation qual-
ity. Therefore, other quality dimensions (like QoI) need to be considered. Until
now, QoO has often been addressed thanks to Context-awareness feature [1], [3].
Therefore, Context information and QoC have received much attention, espe-
cially in the areas of sensor middlewares [22] and IoT [17]. However, Context
information is rarely used by sensor-based systems to perform autonomic adap-
tation but is rather added to sensor observations as meta-data for later analysis
by applications.

Few research efforts have been made to manage QoO with Autonomic Com-
puting. For instance, AcoMS [8] is a sensor middleware for Context distribution.
It enables autonomic adaptation by providing several self-* features such as
configuration, reconfiguration and healing. The solution of Pathan et al. [16] al-
lows sensor plug-and-play, as well as self-reconfiguration processes according to
application scenarios and Context. Finally, SPACES [21] focuses on web-service
adaptation by implementing an autonomic MAPE-K loop to dynamically change
web services behavior according to Context information. Overall, the above so-
lutions have highlighted the benefits to provide autonomic adaptation. However,
they do not consider intrinsic QoO but only rely on the execution Context to
define SLAs and provide adaptation. Finally, they do not take into account
application-specific needs.

To the best of our knowledge, we are the first to propose a generic framework
to achieve application-specific QoO adaptation within sensor-based systems.

6 Conclusion and Perspectives

In this paper, we introduce and describe a generic framework for autonomic adap-
tation within sensor-based systems relying on Quality of Observation (QoO).
This framework aims to bridge the gap between sensors and applications thanks
to the Autonomic Computing paradigm. In this paper, a layered architecture able
to provide various levels of observation consumption according to application-
specific QoO needs has been introduced. This abstract architecture relies on the
definition of Service Level Agreements (SLAs) and can be instantiated according
to different autonomic maturity levels.

By considering QoO, sensor-based systems go beyond commonly-used net-
work QoS, which has shown its limitations within information-centric systems
such as sensor middlewares and IoT platforms. We hope that our generic frame-
work will help researchers and developers to build autonomous sensor-based sys-
tems that focus on their primary function, i.e., deliver high-quality observations
to applications. Further experimentations are needed to estimate the relevancy
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of certain QOO metrics depending on use cases. Moreover, further investigation
into MAPE-K autonomic control loop is strongly recommended, in particular
concerning the Knowledge base (decision rules and execution plans).

As future work, we are currently developing a Cloud-based integration plat-
form for QoI Assessment as a Service. Designed according to the framework
presented in this paper, this platform will be applied to a Smart City use case.
Such contribution will help the different Smart City stakeholders to assess, better
understand and improve QoI in a collaborative way.
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